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ABSTRACT

JOHN W. DENNIS, III: Bootstrapping Max Tests in the Presence of Weak Identification.
(Under the direction of Jonathan B. Hill)

Traditional inference can be distorted in the presence of weakly identified parameters. I explore

the effects of weak identification on inference in two different scenarios that have been previously

unaddressed. First, I consider the effect of weak identification on a test for serial correlation,

where I demonstrate that the distortion arising from weakly identified parameters propagates to

test statistics that are not directly testing the parameter values. I show that existing tests can be

extended to accommodate known sources of identification failure via a modification of the first

order expansion utilized by the bootstrap. Second, I examine inference on a large dimensional

parameter when some of the parameter elements may be weakly identified. Existing tests cannot

simultaneously accommodate identification failure and a parameter vector with large dimension.

In both scenarios, I provide testing procedures that accommodate weak identification, are based on

a maximum value, and are implemented with a bootstrap. The efficacy of these testing procedures

are explored in several Monte-Carlo simulations, and empirically relevant examples are discussed.
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CHAPTER 1

INTRODUCTION AND RELATIONSHIP WITH THE LITERATURE

I describe the use of max tests in the presence of weak identification. This collection informs

the reader of some issues that can arise in common inferential analyses in Economics due to the

presence of weak identification in the parameters and presents solutions to these problems within

the framework of a convenient testing procedure. I consider two practical inferential problems,

and for each I discuss how the presence of weak identification can lead to distorted inference and

present a method to conduct inference in an appropriate manner.

The two classes of inferential problems I consider are white noise tests and tests on a large

dimensional parameter. White noise tests fall within the class of model diagnostic tests; they are

designed to aid the practitioner in determining if a particular model is able to capture all of the

serial correlation present in the data. In this sense, they can be thought of as one of a group of

tests that examines the adequacy of the model in describing the data. In the first paper, I present a

white noise test that is appropriate for residuals from estimated models and is robust to parameter

identification failure in the model.

The second class of tests has become a focus in the literature in recent years due to the vast

quantities of data that have become available to researchers. In particular, researchers often have

many variables in a dataset leading to many objects that must be estimated and tested. In the second

paper, I present a test for many zero restrictions in a model with a large dimensional parameter

when many of the parameter elements may be only weakly identified.

The frameworks presented in both of the problems I consider utilize a bootstrapping proce-

dure to simulate the distribution of a maximum test statistic in the presence of weakly identified

parameters. Here I discuss these topics and the relationship to the econometric literature broadly.

I discuss these topics in more detail as they pertain to each of the two classes of problems that I
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consider in the relevant chapters below.

Identification failure is present in both problems that I consider, but here I must be specific

regarding the meaning of identification failure. Lewbel (ming) indicates the term identification

failure appears in more than two dozen forms in the literature, but all share a common underlying

meaning. In particular, an object is not identified if its true value cannot be uniquely determined in

the population. I specifically use utilize the definition of Andrews and Cheng (2012a) to describe

identification failure as the situation in which there is a known parametric source of identification

failure for a parameter in the model under consideration. The framework of Andrews and Cheng

(2012a) is convenient for the econometrician in describing parametric identification failure, as it

allows a range of identification behaviors to exist between identification and non-identification.

Consider estimating scalar parameters (β, π) from the nonlinear function Yt = βg(Xt, π) + εt

for some smooth non-linear function g. It is well known that when β 6= 0, π can be (strongly)

identified, and when β = 0, π cannot be identified. In order to develop a unifying testing frame-

work, we utilize a thought experiment which can be characterized by using the notion of drifting

sequences of true parameters. Let β = βn be a sequence of true parameters, indexed by the sample

size n, that are drifting to 0. Then the strength of identification of π is categorized by the speed

at which βn → 0. When
√
nβn → ∞, we characterize π as being semi-strongly identified, and

when
√
nβn → b ∈ (0,∞), we say π is weakly identified. In the latter case, our estimator π̂n is

not consistent for the true π0, and converges instead to a random variable under certain conditions.

Table 1 from Andrews and Cheng (2012a) details these categories. It is important to note that in

this literature, the parametric source of identification failure is known. More recently, Han and

McCloskey (2016) develop theory for the case in which the source of identification failure may be

unknown. We focus on the former case and leave this extension for future research.

For the cases of non-identification and weak identification, the estimators for π are inconsistent.

Further, in these cases the estimator for β is consistent; however, it is a function of π̂n which

converges to a random variable, resulting in a non-standard distribution for β̂n. This implies that

the resulting test statistics will exhibit non-standard behavior, yielding distorted inference from

classical tests. In this case, the asymptotic distribution of the test statistics will be nonstandard.

2
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Table 1.1: Identification Categories: Andrews and Cheng’s (2012a) Table I

Category {βn} Sequence Identification Property of π0

I(a) βn = 0 ∀n ≥ 1 Unidentified

I(b) βn 6= 0 and n1/2βn → b ∈ Rdβ Weakly identified

II βn → 0 and n1/2||βn|| → ∞ Semi-strongly identified

III βn → β0 6= 0 Strongly identified

This poses problems for tests based on residuals from model estimation. Non-standard behavior

of the estimators propagates through to the test statistic, yielding a non-standard distribution for

the test statistic and resulting in potentially distorted inference from traditional tests.

Further, this is an issue for economic practitioners, as many commonly used models in Eco-

nomics include parameters that may be unidentified in certain parts of the parameter space. Exam-

ples such as Dynamic Stochastic General Equilibrium models (Guerron-Quintana, Inoue, and Kil-

ian, 2013; Andrews and Mikusheva, 2015), Smooth Transition AutoRegressive models (Terasvirta,

1994; Teräsvirta, 1998; van Dijk, Teräsvirta, and Franses, 2002; Andrews and Cheng, 2013), Pro-

bit models (Andrews and Cheng, 2012a, 2014) and Nonlinear Binary Choice Models (Andrews

and Cheng, 2013), nonlinear instrumental variables models with possibly weak instruments (An-

drews and Cheng, 2012a, 2014), ARMA models Andrews and Ploberger (1996); Andrews and

Cheng (2012a); Dennis (2019), Regime Switching Models (Chen, Fan, and Liu, 2016) and Fuzzy

Regression Discontinuity Designs (Feir, Lemieux, and Marmer, 2016), models based on moment

conditions and GMM (Andrews and Cheng, 2014), and MiDAS Regressions (Ghysels, Hill, and

Motegi, 2016b) have been shown to include model components that may not be identified in certain

regions of the parameter space.

Missing from the analysis of Andrews and Cheng (2012a) is the ability to account for models

with mixed identification strength, referring to models which may simultaneously include parame-

ters from each from each of the identification categories (Cheng, 2015). Consider the simple model

Yt = β1g(Xt, π1) + β2g(Xt, π2) + εt where εt is independent of Xt and with the null hypothesis

3
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H0 : β = 0. Under this null hypothesis, the πj are unidentified nuisance parameters, so this frame-

work is related to the literature on testing with nuisance parameters under the null (Davies, 1977,

1987; Andrews and Ploberger, 1994; Hansen, 1996; Stinchcombe and White, 1998; Ghysels and

Guay, 2004; Andrews and Mikusheva, 2016). Nuisance parameters cause the test statistics to have

non-standard distributions, which often do not have analytic expressions and must be simulated.

In this framework, however, each parameter πj may exhibit its own degree of identification

strength, so a uniformly valid test becomes necessary. Andrews and Cheng (2012a, 2013, 2014)

discuss uniformly valid inference but do not allow for mixed identification strength. Cheng (2015)

offers the first uniformly valid inference procedure for inference on sub-vectors of β allowing for

mixed identification strength but limits her theory to additive nonlinear models.

Andrews and Cheng (2012a, 2013, 2014) and Cheng (2015) discuss inference under weak iden-

tification but do not consider large dimensional parameters or max test statistics, implementation

of a bootstrap, or tests on objects from estimated models, such as white noise tests, that are not

tests directly on the model parameters. In contrast, in the first paper, we consider white noise tests

based on the maximum of a sequence of correlations that we implement with a bootstrap, and in

the second paper, we construct a test based on the maximum of a sequence of estimated parameters

from a high dimensional parameter.

The testing procedures that I consider in both classes of problems are based on max tests.

When testing the maximum value in a sequence, we are often interested in determining if any

of the parameter elements are different from zero. In considering only the maximum from the

sequence of values, the max test statistic utilizes the most informative measure available from

our data, eliminating issues that arise from low degrees of freedom and inversion of large or near

singular covariance matrices when a large number of variables needs to be tested (Hill and Dennis,

2018; Ghysels, Hill, and Motegi, 2016a), or by combining noisy estimates, which occurs when

calculating serial correlations at long lags (Hill and Motegi, 2018).

Statistics based on a maximum of a sequence of values is an extensively studied topic in the

4
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literature1 dating at least to Fisher and Tippet (1928) and Gnedenko (1943). See also Gumbel

(1958) and Berman (1964). Typically in this literature, extreme value theory arguments appeal

to the Extremal Types Theorem to determine the exact asymptotic distribution of the maximum

statistic (de Haan, 1976). For example, Xiao and Wu (2014) provide a test for serial correlation

for observed sequences using the maximum sample autocovariance and show that under suitable

normalization, the test statistic converges in distribution to a Gumbel (type I extreme value) dis-

tribution. These arguments require that when the data are divided into blocks, the dependence

between increasingly distant blocks decays at a sufficient rate as with a mixing condition.

Hill and Motegi (2018); Hill and Dennis (2018) argue that when estimating parsimonious mod-

els, allowing for general dependence in the data generating process, or residuals to be used in the

max statistic, the classical extreme value theory arguments are no longer straight forward to prove

and may require more stringent assumptions than are needed by other methods. Further, extreme

value theoretic arguments for establishing the limiting distribution of the maximum of a sequence

of values often relies on Gaussianity of the underlying sequence. Hill and Motegi (2018); Hill

and Dennis (2018) develop theory that does not rely on Gaussianity and that allows the use of the

dependent wild bootstrap (Shao, 2010, 2011a) to mimic the finite sample distribution of the max

statistic.

For these reasons, I simulate the distribution of the test statistics with forms of a Wild, or

Gaussian multiplier, bootstrap (Wu, 1986; Liu, 1988). Methods for bootstrapping high dimensional

statistics have not been available until recently. Chernozhukov, Chetverikov, and Kato (2013,

2017) develop a theory that is able to both bypass the typical extreme value theoretic asymptotic

arguments and deliver an impressive growth rate for the sequence being examined.2 However, they

require independence, and their theory is only appropriate for observed random variables and relies

on Gaussian approximation that is not appropriate for approximations of non-Gaussian normalized

summands. Zhang and Cheng (2018) extend the Gaussian approximation theory in Chernozhukov

1See Leadbetter, Lindgren, and Rootzèn (1983) and Resnick (1987) for textbook treatments.

2See also Belloni, Chernozhukov, Chetverikov, Hansen, and Kato (2018).

5
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et al. (2013, 2017) to allow for dependence, but only allow for observed random variables. Zhang

and Wu (2017) develop theory for a Gaussian approximation for high dimensional times series but

only allow for observed sequences as well. The theory in Hill and Dennis (2018); Hill and Motegi

(2018) is also able to bypass extreme value theoretic arguments, allows for dependence under the

null, and is appropriate for residuals. For this reason, we rely on the theory developed in Hill and

Motegi (2018); Hill and Dennis (2018).

This collection is organized as follows. Chapter 2 presents the test for serial correlation in

models with weakly identified parameters. Chapter 3 presents the test for a large dimensional

parameter when the parameter elements may exhibit mixed identification strength. Proofs of the

results are collected in Appendices A and B.

6



www.manaraa.com

CHAPTER 2

TESTING WHITE NOISE WHEN SOME PARAMETERS MAY BE WEAKLY IDENTIFIED

2.1 Introduction

We develop a bootstrapped white noise test for residuals that is based on the maximum cor-

relation and is robust to parameter identification failure in the model. It is well known that the

asymptotic and finite sample distributions of estimators are non-standard when the model contains

parameters that are weakly identified, and that standard inference based on t or χ2 distributions can

be distorted. For example, Andrews and Cheng (2012a) demonstrate in their figures 1 and 2 that

densities of the estimators from an ARMA(1,1) model can be quite different from normal when the

AR and MA parameters are close to the same value. Further, Cheng (2015) shows in her table 1

that using standard normal critical values for tests on a parameter from an additive nonlinear model

with a weakly identified parameter can generate large size distortions.

The impact of identification failure on the distributions of the estimators for a model can prop-

agate beyond tests on the parameter values. When the test statistic is based on an estimated model,

the usual method to either prove the asymptotic distribution of the test statistic or to implement a

finite sample correction via a bootstrap is to utilize a first order expansion of the test statistic that

involves the distribution of the parameter estimators. This enables inference on the test statistic to

properly account for the impact of model estimation.

Traditional methods assume that the distribution of the estimators is normal, an assumption

that is not true when some of the parameters are weakly identified. In particular, we show that the

distribution of our white noise max test statistic differs under weak and strong identification, and

we demonstrate that ignoring the effect of weakly identified parameters can lead to size distortions.

We provide a robust procedure that allows a correctly sized, consistent test for the null hypothesis

of uncorrelated errors when the strength of identification in the estimated model is not known.

7
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In particular, this is an issue for economic practitioners engaging in model diagnostic activi-

ties, as many commonly used models in Economics include parameters that may be unidentified in

certain parts of the parameter space. Examples such as Smooth Transition AutoRegressive models

(Terasvirta, 1994; van Dijk et al., 2002; Andrews and Cheng, 2013), Probit models (Andrews and

Cheng, 2012a, 2014) and Nonlinear Binary Choice Models (Andrews and Cheng, 2013), nonlinear

instrumental variables models with possibly weak instruments (Andrews and Cheng, 2012a, 2014),

ARMA models (Andrews and Ploberger, 1996; Andrews and Cheng, 2012a), Regime Switch-

ing Models (Chen et al., 2016) and Fuzzy Regression Discontinuity Designs (Feir et al., 2016),

Dynamic Stochastic General Equilibrium models (Guerron-Quintana et al., 2013; Andrews and

Mikusheva, 2015), models based on moment conditions and GMM (Andrews and Cheng, 2014),

and MiDAS Regressions (Ghysels et al., 2016b) have been shown to include model components

that may not be identified in certain regions of the parameter space. The models above are often

used under the assumption of a white noise error term. The current paper focuses on testing if the

error term is a white noise process while allowing for some model parameters to be unidentified in

parts of the support of the parameter space. The test presented in this paper, then, can be viewed as

a test of model adequacy for models such as those mentioned above, which may have identification

failure in regions of the parameter space.

There are three key components that characterize this test. First, this test is a white noise corre-

lation test for residuals that only requires uncorrelatedness under the null. Allowing for residuals

requires that we account for the influence of the estimated parameters on our test statistic. In par-

ticular, we allow for models in which some parameters may be non- or weakly identified in the

sense of Andrews and Cheng (2012a), leading to inconsistent estimators. Utilizing a first order

expansion of our test statistic about the point of identification failure allows us to account for the

influence of the estimated parameters without the need for a consistent estimator for the parameters

that are not identified.

Second, the test statistic is formed using the maximum from an increasing sequence of sample

correlations. Using the maximum correlation allows for a sharper statistic in the sense that, unlike

8
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a traditional portmanteau test which utilizes the sum of all squared sample correlations, the max-

imum statistic only focuses on the most informative sample correlation and, therefore, mitigates

both the issue of washing out a single non-zero correlation in an average when testing for potential

correlations at many lags and issues stemming from noisy sample correlation estimates that can

occur at long lags. Further, max statistics are convenient for high dimensional objects, as they do

not require inversion of a large covariance matrix.

Traditional arguments for statistics of a maximum value rely on proving asymptotic conver-

gence via the extremal types theorem (de Haan, 1976), but these arguments are typically for ob-

served sequences, and bootstraps are not typically considered for finite sample improvement. Xiao

and Wu (2014) discuss a similar maximum statistic and prove that under suitable normalizing con-

stants their test statistic converges to a type I extreme value distribution; however, they do not allow

for residuals, an important distinction that affects the extreme value theory asymptotic argument,

and they do not prove the validity of their bootstrap. Further, the extreme value theory approach re-

quires restrictions to ensure convergence that are not necessary under our bootstrapping approach.

We bypass standard extreme value theory arguments by use of theory in Hill and Dennis (2018)

and Hill and Motegi (2018) paired with the dependent wild bootstrap of Shao (2010, 2011a).

Finally, our test is robust against identification failure of the model parameters. In order to

account for the influence parameter estimation on our test statistic, we incorporate a first order

expansion that involves the distribution of the parameter estimators. Whether or not our model

has weakly identified parameters affects the terms in the expansion of the test statistic, which

correspondingly affects the limiting distributions and the objects that must be bootstrapped. This

suggests that traditional model diagnostics on estimated models with weakly identified parame-

ters may lead to tests with size distortions, as we demonstrate in our simulations. We show that

modifying the first order expansion utilized by the bootstrap to account for the dependence of the

test statistic upon the estimated parameters can mitigate this distortion. Namely, when a consis-

tent estimator is not available, we perform our expansion about the point of identification failure.

In practice, we do not know whether consistent estimators are available or not for our potentially

9
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unidentified parameters. We construct our identification robust test by bootstrapping the test statis-

tic under both scenarios and stitching the resulting critical values together with an identification

pre-test as discussed in Andrews and Cheng (2012a).

Throughout the paper, we assume a general model for the residuals from a regression model,

which we denote εt(θ), where θ are the parameters of the model. For clarity, we elaborate the

details for our test with an ARMA model (e.g. Yt = βYt−1 + εt− πεt−1) and an additive nonlinear

model, an example of which is the Smooth Transition Autoregressive model of Terasvirta (1994):

Yt = βXt × g(Zt, π) + ζXt + εt, where Xt typically contains lags of Yt, g is a smooth, nonlinear

function1 and εt is the model error, which we estimate with the regression residuals εt(θ̂n). Our

goal is to test if {εt} is a white noise process:

H0 : ρ(h) = 0 ∀h ∈ N vs. HA : ρ(h) 6= 0 for some h ∈ N

where ρ(h) = E(εtεt−h)/E(εtεt). To test this hypothesis, we specifically consider the sample max

correlation statistic (Hill and Motegi, 2018)

T̂n =
√
n max

1≤h≤Ln
|ρ̂n(h)|,

where {Ln} is a sequence of integers with Ln → ∞ as n → ∞, Ln = o(n) allowing for a true

white noise test.2 We utilize the dependent wild bootstrap (Shao, 2010, 2011a) paired with an

expansion of our test statistic to account for the dependence upon the estimated parameters. This

allows our test to be appropriate for residuals as in Hill and Motegi (2018); however, the test in

Hill and Motegi (2018) requires consistency of all parameter estimators and, thus, cannot accom-

modate models in which some parameters are weakly identified. Our test is designed specifically

to accommodate such models.

1common examples are the logistic and exponential functions g(z, π) = (1−exp{−π1(z−π2)})−1 and g(z, π) =
1− exp{−π1(z − π2)2} for π1 > 0. See e.g. van Dijk et al. (2002).

2Ln = o(n) is necessary to provide Fischer consistency of the the sample correlation.

10
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Our white noise test, however, is robust to parameter identification failure. Consider estimating

scalar parameters (β, π) from the nonlinear model Yt = β0g(Zt, π0) + εt for some non-linear

function g. It is well-known that π0 can be (strongly) identified when β0 6= 0, and when β0 = 0,

π0 cannot be identified. In order to accommodate non-identification, we adopt the identification

unifying framework of Andrews and Cheng (2012a). This framework is characterized by the notion

of drifting sequences of true parameters. Let β ≡ βn be a sequence of true parameters that are

drifting to 0, the point of identification failure for this example. Andrews and Cheng (2012a)

categorize the strength of identification of π0 by the speed at which βn → 0. If βn → 0 slowly

enough, then one can still consistently estimate π0, and we say that π0 is semi-strongly identified.

However, if βn → 0 too quickly, then one cannot consistently estimate π0, and we say that π0 is

weakly identified. Table 1 from Andrews and Cheng (2012a) details the rates associated with these

categories. It is important to note that in this literature the source of identification failure is known;

that is, our model tells us specifically that β = 0 results in identification failure. More recently,

Han and McCloskey (2016) develop theory for the case in which the source of identification failure

is unknown. We focus on the former case and leave this extension for future research.

Note that the estimator for β is consistent, regardless of the identification strength of π. How-

ever, the estimator for β is a function of the estimator for π, β̂n ≡ β̂n(π̂n), and π̂n converges

to a random variable when π0 is not consistently estimable, yielding a non-standard distribution

for β̂n.3 This poses problems for tests based on residuals from model estimation. Non-standard

behavior of the estimators propagates through to the test statistic, yielding a non-standard distri-

bution for the test statistic and resulting in potentially distorted inference from traditional tests.

The limiting distribution of our test statistic can be categorized by whether π0 is consistently es-

timable or not, so we group weak identification and non-identification together and refer to them

as weak identification, and we collectively refer to strong and semi-strong identification as strong

identification.

This paper is related to but different from the literature on hypothesis testing with a nuisance

3See e.g. figure 2 in Andrews and Cheng (2012a).
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parameter. Davies (1977, 1987) provide early references for hypothesis tests with nuisance pa-

rameters under the null. See also Hansen (1996), Stinchcombe and White (1998), Ghysels and

Guay (2004), and more recently Andrews and Mikusheva (2016). Andrews and Ploberger (1994)

discuss optimal tests with a nuisance parameter under the null. Andrews and Ploberger (1996)

develop a test for white noise against an ARMA(1,1) alternative since these models provide a par-

simonious representation of a broad class of stationary time series. As noted by Nankervis and

Savin (2010), Poterba and Summers (1988) show that many financial return series can be repre-

sented by ARMA(1,1) models. In their model, the ARMA(1,1) reduces to a white noise process

under the null, making the MA coefficient a nuisance parameter.

Andrews and Cheng (2012a, 2013, 2014) and Cheng (2015) discuss inference under weak

identification but do not consider max test statistics, implementation of a bootstrap, or tests on

objects from estimated models, such as white noise tests, that are not tests directly on the model

parameters. In contrast, we consider white noise tests based on the maximum of a sequence of

correlations that we implement with a bootstrap.

White noise tests have a long history, dating in some form to at least Box and Pierce (1970) and

Ljung and Box (1978). In addition to portmanteau tests, spectral tests (Hong, 1996; Shao, 2011a)

are also widely considered in the literature. Many early tests for serial correlation are based on

i.i.d. Gaussian assumptions and required a finite maximum lag length cutoff. We are specifically

interested in true white noise tests, which are able to accommodate asymptotically infinitely many

lags, as questions such as the efficient market hypothesis are related to true white noise tests (Hill

and Motegi, 2019).

Further, and perhaps more importantly, serial uncorrelatedness is equivalent to independence

under Gaussian assumptions, but it does not imply serial independence in general. Many questions

in economics and finance such as financial predictability are related to a martingale difference se-

quence hypothesis, which itself implies serial uncorrelatedness but not serial independence. For

example, a GARCH(1,1) process is a martingale difference sequence and is uncorrelated but seri-

ally dependent. Romano and Thombs (1996) showed that the traditional Box-Pierce statistic can be

misleading under uncorrelated dependent errors. Francq, Roy, and Zakoian (2005) similarly show

12
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that the asymptotic distribution of the correlation coefficients of residuals from ARMA processes

do not follow the standard chi-square distribution when the errors are uncorrelated but dependent,

and using chi-square critical values in this situation leads to distorted inference.

Often, the martingale difference sequence errors are modeled using GARCH processes, and

standardized residuals are used to construct the sample serial correlation even though these tests do

not have standard asymptotic distributions. Chen (2008) provides tests for autocorrelation specif-

ically for models with GARCH based errors, but these tests assume that the model is correctly

specified. Francq et al. (2005) and Nankervis and Savin (2010, 2012) develop tests that do not

rely on a correctly specified model for the conditional variance. Further, Nankervis and Savin

(2010, 2012) note that the assumption of martingale difference errors may be too restrictive. As

a result, recent interest has focused on uncorrelated dependent time series (Nankervis and Savin,

2010, 2012; Shao, 2011a,b; Zhu and Li, 2015; Zhang, 2016; Hill and Motegi, 2018).

Our test is based on the maximum sample serial correlation, and when testing the maximum

value in a sequence, we are most often interested in determining if any of the parameter elements

are different from zero. In considering only the maximum from the sequence of values, the max

test statistic utilizes the most informative measure available from our data, eliminating issues that

arise from low degrees of freedom and inversion of large or near singular covariance matrices when

a large number of variables needs to be tested (Hill and Dennis, 2018; Ghysels et al., 2016a), or

by combining noisy estimates, which occurs when calculating serial correlations at long lags (Hill

and Motegi, 2018).

Statistics based on a maximum of a sequence of values is an extensively studied topic in the

literature4 dating at least to Fisher and Tippet (1928) and Gnedenko (1943). See also Gumbel

(1958) and Berman (1964). Typically in this literature, extreme value theory arguments appeal

to the Extremal Types Theorem to determine the exact asymptotic distribution of the maximum

statistic (de Haan, 1976). For example, Xiao and Wu (2014) provide a test for serial correlation

for observed sequences using the maximum sample autocovariance and show that under suitable

4See Leadbetter et al. (1983) and Resnick (1987) for textbook treatments.
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normalization, the test statistic converges in distribution to a Gumbel (type I extreme value) dis-

tribution. These arguments require that when the data are divided into blocks, the dependence

between increasingly distant blocks decays at a sufficient rate as with a mixing condition.

Hill and Motegi (2018) and Hill and Dennis (2018) argue that when allowing for general de-

pendence in the data generating process and residuals to be used in the max statistic, the classical

extreme value theory arguments are no longer straight forward to prove and may require more

stringent assumptions than are needed by other methods. Further, extreme value theoretic argu-

ments for establishing the limiting distribution of the maximum of a sequence of values often

relies on Gaussianity of the underlying sequence. Hill and Motegi (2018) and Hill and Dennis

(2018) develop theory that does not rely on Gaussianity and that allows the use of the dependent

wild bootstrap (Shao, 2010, 2011a) to mimic the finite sample distribution of the max statistic.

The bootstrapped white noise test in Hill and Motegi (2018) is based on the maximum se-

rial correlation and allows for a weaker moment contraction property than that in Xiao and Wu

(2014) and side-steps asymptotic extremal value theory arguments by exploiting convergence of

{
√
n(γ̂(h) − γ(h)) : 1 ≤ h ≤ L} to a Gaussian process for each L ∈ N paired with arguments

dating to Ramsey (1929). This method requires weaker conditions than the extreme value theo-

retic approach but results in the trade-off that an upper bound on the sequence Ln →∞ cannot be

provided.5 Further, Hill and Motegi (2018) ignore the possibility of nuisance parameters and only

allow for strong identification of all parameters in the model estimation step.

Methods for bootstrapping high dimensional statistics have not been available until recently.

Chernozhukov et al. (2013, 2017) develop a theory that is able to both bypass the typical extreme

value theoretic asymptotic arguments and deliver an impressive growth rate for the sequence being

examined. However, they require independence, and their theory is only appropriate for observed

random variables and relies on Gaussian approximation that is not appropriate for approximations

5Hill and Motegi (2018) address the issue of optimal lag selection with a data driven procedure, modified from the
method of Escanciano and Lobato (2009). This procedure could be applied to the testing framework presented here;
however, this is beyond the scope of this paper, as we seek to illustrate the effect of weak identification on the test.
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of non-Gaussian normalized summands.6 Zhang and Cheng (2018) extend the Gaussian approx-

imation theory in Chernozhukov et al. (2013, 2017) to allow for dependence, but only allow for

observed random variables. Zhang and Wu (2017) develop theory for a Gaussian approximation

for high dimensional times series but only allow for observed sequences as well. The theory in

Hill and Dennis (2018) and Hill and Motegi (2018) is also able to bypass extreme value theoretic

arguments, allows for dependence under the null, and is appropriate for residuals. For this reason,

we rely on the theory developed in Hill and Motegi (2018) and Hill and Dennis (2018).

For model estimation, we adopt the notation of Andrews and Cheng (2012a). Section 2.2

discusses the preliminary notation and assumptions needed to fit within their framework. Section

2.3 presents the main assumptions and results, and we present the bootstrap and prove its validity in

section 2.4. Section 2.5 presents the Monte-Carlo simulations. All proofs and supporting lemmas

are collected in the appendix.

2.2 Preliminary Notation and Assumptions

The true parameter is γ = (θ, φ) with compact true parameter space

Γ = {γ = (θ, φ) : θ ∈ Θ∗, φ ∈ Φ∗(θ)}

where θ = (β, ζ, π) = (ψ, π), ψ = (β, ζ), and we assume ψ is always identified and ζ does not

effect the identification of π, and φ is an additional parameter such that γ = (θ, φ) completely

determines the distribution of the data. For some γ ∈ Γ, expectation under the true distribution of

{(Yt, Xt, εt)} = {Wt : t ≤ n} is denoted Eγ .

Since the estimator π̂n for πn is inconsistent, we make use of the following concentrated crite-

rion function Qc
n(π) and estimator ψ̂n(π). Define ψ̂n(π) ∈ Ψ(π) for a given π ∈ Π by

Qn(ψ̂n(π), π) = inf
ψ∈Ψ(π)

Qn(ψ, π) + op(n
−1)

6See also Belloni et al. (2018).
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and define π̂n ∈ Π by

Qc
n(π̂n) = Qn(ψ̂n(π̂n), π̂n) = inf

π∈Π
Qn(ψ̂n(π), π) + op(n

−1).

Observe (ψ̂n(π̂n), π̂n) = θ̂n = infθ∈ΘQn(θ) + op(n
−1).

We adopt the notation of Andrews and Cheng (2012a) in order to define cases that differentiate

weak and (semi-)strong identification. The theory relies on the following drifting sequences of true

parameters. Define the set of true drifting sequences as Γ0 = {{γn ∈ Γ : n ≥ 1} : γn → γ0 ∈ Γ},

and define the drifting cases:

(i) Γ(γ0, 0, b) = {{γn} ∈ Γ0 : β0 = 0, n1/2βn → b ∈ (R ∪ {±∞})dβ}

(ii) Γ(γ0,∞, ω0) = {{γn} ∈ Γ0 : n1/2βn →∞, βn/||βn|| → ω0, ||ω0|| = 1}.

In our model, the identification of π is based on whether or not the parameter β = 0. In terms of

these drifting sequences, π0 is not identified asymptotically when the limiting parameter β0 = 0.

Further, in the case that β0 = 0, the speed at which βn → β0 = 0 affects the asymptotic analysis.

In particular, when βn → 0 fast enough, given by case (i) with ||b|| <∞, we say the parameter π0

is weakly identified. In this case, the estimator π̂n is not consistent. Case two gives the definitions

of semi-strong identification, when β0 = 0 and strong identification, when β0 6= 0.

In the (semi-)strong identification cases π̂n is consistent, and we employ first order expansions

around the true parameter θn. However, since π̂n is not consistent under weak identification, an

expansion around θn = (ψn, πn) is not appropriate. Inspired by the expansion of the criterion

function about the point of non-identification in Andrews and Cheng (2012a), we expand our test

statistic about the point of non-identification in the weak identification case in order to deal with

the inconsistency of π̂n. Recall the point of non-identification is β0 = 0. Define ψ0,n = (0, ζn) and

Q0,n = Qn(ψ0,n, π).

Define

ξ(π; γ0, b) = −1

2
(G(π) +K(π, π0)b)′H−1(π)(G(π) +K(π, π0)b)
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where G is a mean zero Gaussian process, H is a Hessian, and K arises as a bias correction.

Assume π∗(γ0, b) = argmin
π∈Π

ξ(π; γ0, b).

More specifically, under {γn} ∈ Γ(γ0, 0, b) with ||b|| < ∞, the mean zero Gaussian process

{G(π; γ0) : π ∈ Π} is defined as the limit of the process {Gn(π; γ0) : π ∈ Π} defined by

Gn(ψ0,n, π) = n1/2

{
∂

∂ψ
Qn(ψ0,n, π)− Eγn

∂

∂ψ
Qn(ψ0,n, π)

}

= n−1/2

n∑
t=1

(
mψ(Wt, ψ0,n, π)− Eγnmψ(Wt, ψ0,n, π)

)

where ∂
∂ψ
Qn(θ) = n−1

∑n
i=1 m

ψ(Wt, θ). H(π; γ0) is the nonstochastic symmetric dψ × dψ matrix

valued function, continuous on Π that is the uniform (in π) limit ofHn(ψ, π; γ0) = ∂
∂ψ

∂
∂ψ′
Qn(ψ, π).

Finally, Kn(θ; γ0) = n−1
∑n

t=1
∂
∂β0
Eγ0m

ψ(Wt, θ).

Assumption 1 (Weak Identification Objects). Under {γn} ∈ Γ(γ0, 0, b) with ||b|| <∞,

(i) Gn(·) ⇒ G(·; γ0), where G(·; γ0) is a mean zero Gaussian process indexed by π ∈ Π with

bounded continuous sample paths and a.s. p.d. covariance kernel

Ω(π, π̃; γ0) ≡ E[G(π; γ0)G(π̃; γ0)′] for π, π̃ ∈ Π.

(ii) supπ∈Π ||Hn(ψ0,n, π) − H(π; γ0)|| p−→ 0 for some nonstochastic symmetric dψ × dψ matrix-

valued function H(π; γ0) on Π × Γ that is continuous on Π for all γ0 ∈ Γ and

λmin(H(π; γ0)) > 0 and λmin(H(π; γ0)) <∞ ∀π ∈ Π for all γ0 ∈ Γ with β0 = 0.

(iii) Kn(θ; γ) exists for all (θ, γ) ∈ Θδ × Γ0, ∀n ≥ 1 and for some nonstochastic dψ × dβ

matrix-valued function K(ψ0, π; γ0) that is continuous on Π for all γ0 ∈ Γ with β0 = 0,

Kn(ψ̃n, π; γ̃n) → K(ψ0, π; γ0) uniformly over π ∈ Π for all nonstochastic sequences {ψ̃n}

and {γ̃n} such that γ̃n → γ0 and ψ̃n → ψ0 = (0, ζ0).

(iv) each sample path of the stochastic process {ξ(π; γ0, b) : π ∈ Π} is some set A(γ0, b) with

Pγ0(A(γ0, b)) = 1 is minimized over Π at a unique point, denoted π∗(γ0, b) ∀γ0 ∈ Γ with

β0 = 0 and for all b with ||b <∞.
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These assumptions are Assumptions C3, C4, and C5 Andrews and Cheng (2012a) which we

borrow in order to retain generality. The objects Gn, Hn, and Kn are the objects that appear in our

test statistic.

Example 1 (STAR(1) Model). Consider the model εt(θ) = yt − βxtg(zt, π) − ξxt with true

parameter θn so that εt(θn) = εt. We estimate the model with least squares, so we have Qn(θ) =

1
2

1
n

∑n
t=1 εt(θ)

2. Define dψ,t(π) = ∂
∂ψ
εt(ψ, π) = −[xtg(zt, π), xt]

′. Then

Ĥn(π) =
1

n

n∑
t=1

dψ,t(π)dψ,t(π)′

K̂n(π; γ0) = − 1

n

n∑
t=1

dψ,t(π)xtg(zt, π0)

and

Gn(π) =
1√
n

n∑
t=1

{
εtdψ,t(π)− Eγn [εtdψ,t(π)]

}
− b′ 1

n

n∑
t=1

{
xtg(zt, πn)dψ,t(π)− Eγn [xtg(zt, πn)dψ,t(π)]

}
=

1√
n

n∑
t=1

{
εtdψ,t(π)− Eγn [εtdψ,t(π)]

}
+ opπ(1).

Then E(εt|xt) = 0 a.s. and E(ε2
t |xt) = σ2 ∈ (0,∞) a.s. under H0 implies the covariance

kernel for G(π) is E[e2
tdψ,t(π)dψ,t(π̃)′] = σ2H(π, π̃). Further, this implies that H−1/2(π)G(π) ∼

N(0, σ2) with covariance kernel σ2H−1/2(π)H(π, π̃)H−1/2(π).

Example 2 (ARMA(1,1) Model). Consider the model yt = (βn + πn)yt−1 + εt − πnεt−1. This

model is estimated by maximum likelihood, the limits are described by the following quantities.

Hn(π) =
1

n

n∑
t=1

ζ−1
n

(∑∞
j=0 π

jyt−j−1

)2

ζ−2
n yt

∑∞
k=0 π

kyt−k−1

ζ−2
n yt

∑∞
k=0 π

kyt−k−1 −(1/2)ζ−2
n + ζ−3

n y2
t


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with limit

H(π; γ0) =

(1− π2)−1 0

0 (2ζ2
0 )−1

 .

Kn(θ; γ0) is complicated (see Andrews and Cheng (2012b), section C) and has limit K(π; γ0) =−(1− π0π)−1

0

.

Gn(π) = n−1/2

n∑
t=1

−ζ−1
n yt

∑∞
k=0 π

kyt−k−1

−(1/2)ζ−2
n (y2

t − ζn)

−
−Eγnζ−1

n yt
∑∞

k=0 π
kyt−k−1

−Eγn(1/2)ζ−2
n (y2

t − ζn)


has the limit

G(π; γ0) =

 ∑∞
j=0 π

jZj

(1/2)ζ−2(Eγ0(ε2
t − ζ0)2)1/2Z


where Z,Z0, Z1, . . . are independent standard normal random variables. The covariance kernel

of G(π; γ0) is

(1− ππ̃)−1 0

0 (1/4)ζ−4
0 Eγ0(ε2

t − ζ0)2

.

Finally, define the Gaussian process

τ(π; γ0, b) = −H−1(π; γ0)(G(π; γ0) +K(π; γ0)b)− (b, 0).

We require additional objects for the case in which π0 is (semi-)strongly identified.

Let B(β) =

 Idψ 0dψ×dπ

0dψ×dπ ||β|| · Idπ

.

Assumption 2 (Strong Identification Objects). Under {γn} ∈ Γ(γ0,∞, ω0),

(i) Gθ
n(θn) = n1/2B−1(βn) ∂

∂θ
Qn(θn)

d−→ Gθ(γ0) ∼ N(0, V (γ0)) for some symmetric dθ × dθ

matrix V (γ0) which is positive definite ∀γ0 ∈ Γ.
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(ii) Jn(θn) ≡ B−1(βn) ∂
∂θ

∂
∂θ′
Qn(θn)B−1(βn)

p−→ J(γ0), where J(γ0) is a dθ×dθ nonsingular and

symmetric matrix.

The previous assumption is Assumptions D2 and D3 from Andrews and Cheng (2012a), which

detail the objects that appear in our expansions under the semi-strong and strong identification

cases. The scaling matrixB(βn) is needed in order to eliminate singularity of the second derivative

matrix when βn → 0.

We further assume that ∂
∂θ
Qn(θ) = n−1

∑n
i=1 m

θ(Wt, θ), which also implies that mψ(Wt, θ) =

Sψmθ(Wt, θ) for the dψ × dθ selection matrix Sψ that selects the first ψ elements from the dθ × 1

vector mθ
t (θ) ≡ mθ(Wt, θ).

2.3 Assumptions and Main Results

2.3.1 Assumptions

Recall that εt(θ̂n) is our model for the regression error (e.g. εt(θ̂n) = Yt− β̂nXt× g(Xt, π̂n)−

ζ̂nXt in the nonlinear regression model), so under a correctly specified model with true parameter

θn, we have εt ≡ εt(θn).

Assumption 3 (A). If β = 0, then εt(θ) does not depend on π for all θ = (β, ζ, π) = (0, ζ, π) ∈ Θ

for any true parameter γ∗ ∈ Γ. Moreover, Qn(θ) only depends on π through εt(θ).

Remark 1. Assumption 3 is similar to and indeed related to Assumption A in Andrews and Cheng

(2012a). This restricts our attention to models in which the source of identification failure is

known. Han and McCloskey (2016) extend the framework of Andrews and Cheng (2012a) to allow

for cases in which the source of identification failure is not known; however, we do not allow for

unknown sources of identification failure in our present white noise residual test.

Our primary concern is in testing if {εt} is a white noise process:

H0 : ρ(h) = 0 ∀h ∈ N vs. HA : ρ(h) 6= 0 for some h ∈ N
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Our test statistic is the sample max correlation statistic

T̂n = max
1≤h≤Ln

√
n|ρ̂n(h)|

where ρ̂n(h) = E(εtεt−h)/E(ε2
t ) and Ln is a sequence of integers with Ln → ∞ as n → ∞ and

Ln = o(n) to allow for a true white noise test.

We begin with assumptions on the estimator θ̂n that are standard results under weak iden-

tification (see e.g. Andrews and Cheng (2012a)). This allows us to maintain a great deal

of generality with respect to the model that we are investigating. Define τn(π; γ0, b) =

−H−1
n (π; γ0)(Gn(π; γ0) +Kn(π; γ0)b)− (b, 0), and recall that

Gn(ψ0,n, π) = n−1/2

n∑
t=1

(
mψ
t (ψ0,n, π)− Eγnm

ψ
t (ψ0,n, π)

)

and

Gθ
n(θn) = n−1/2B−1(βn)

n∑
i=1

mθ
t (θn).

Assumption 4 (m). (i) Under {γn} ∈ Γ(γ0, 0, b) with ||b|| < ∞, mψ
t (π) ≡ mt(ψ0,n, π) is sta-

tionary, ergodic, Lp/2-bounded for some p > 4, and L2-NED with size −1/2 on an α-mixing

base {νt} with coefficients ανh = O(h−p/(p−4)−ι) for tiny ι > 0 for every π ∈ Π.

(ii) Under {γn} ∈ Γ(γ0,∞, ω0), mθ
t ≡ mt(θn) is mean zero, stationary, ergodic, Lp/2-bounded

for some p > 4, and L2-NED with size −1/2 on an α-mixing base {νt} with coefficients

ανh = O(h−p/(p−4)−ι) for tiny ι > 0.

(iii) mt(θ) is two times continuously differentiable and E[supθ∈Θ ||( ∂
∂θ

)jmt(θ)||2] < ∞ for j =

0, 1, 2.

Remark 2. Assumption 4 is a sufficient condition for Assumption 1(a) and 2(a). Smoothness

(iii) ensures a stochastic equicontinuity property for a functional central limit theorem (see e.g.

Andrews (1994)).
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Assumption 5 (Weak Id Estimator Limit). Under {γn} ∈ Γ(γ0, 0, b) with ||b|| <∞,

(i) supπ∈Π ||ψ̂n(π)− ψn||
p−→ 0

(ii) supπ∈Π ||n1/2(ψ̂n(π)− ψ0,n) +H−1
n (ψ0,n, π) 1√

n

∑n
t=1m

ψ
t (ψ0,n, π)|| p−→ 0

Assumption 6 (Strong Id Estimator Limit). Under {γn} ∈ Γ(γ0,∞, ω0),

(i) ||θ̂n − θn||
p−→ 0

(ii) n1/2B(βn)(θ̂n − θn) = −J−1
n (γ0)n−1/2B−1(βn)

∑n
i=1 m

θ
t (θn) + op(1)

Following Hill and Motegi (2018), our test applies to near-epoch-dependent random variables.

Assumption 7 (W). (i) {xt, yt} are stationary, ergodic, and L2+δ-bounded for some δ > 0.

Denote by Ft the σ-field generated by {xt, yt}.

(ii) εt has E(εt) = 0, is stationary, ergodic, Lp-bounded for some p > 4, and L4-NED with size

−1/2 on an α-mixing base {νt} with coefficients ανh = O(h−p/(p−2)−ι) for tiny ι > 0.

In order to establish the limiting distribution of our test statistic, we require some additional

assumptions on the function εt(θ).

Assumption 8 (R0). (i) εt(θ) is Ft-measurable for each θ and three times continuously differ-

entiable a.s. on an open convex set containing Θ∗.

(ii) Under {γn} ∈ Γ(γ0, 0, b) with ||b|| < ∞, E[supπ∈Π supψ∈Nψ0
|( ∂
∂ψ

)jεt(ψ, π)|4] < ∞ for

j = 0, 1, 2, 3 and a compact set Nψ0 containing ψ0.

(iii) Under {γn} ∈ Γ(γ0,∞, ω0), E[supθ∈Nθ0
|( ∂
∂θ

)jεt(θ)|4] <∞ for j = 0, 1, 2, 3 and a compact

set Nθ0 containing θ0.

The following two assumptions are technical conditions that are necessary to establish uniform

LLNs for the derivatives that appear in the mean value expansion of the covariance under weak

and strong identification, respectively. We require more conditions under weak identification due

to the inconsistency of the estimator π̂n. In particular, the expansion in the weak identification case
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is about ψ0,n rather than the true parameter θn, leading to the need to add and subtract εtεt−h in the

proof, hence the need for Assumption 9(v) which ensures the associated bias term is bounded.

Assumption 9 (Rw). Under {γn} ∈ Γ(γ0, 0, b) with ||b|| <∞,

(i) the non-stochastic function Dn(h, π) = Dn(h, ψ0,n, π) ≡

Eγn [ ∂
∂ψ

(εt(ψ, π)εt−h(ψ, π))]
∣∣∣
ψ=ψ0,n

exists and is differentiable a.s. on an open, convex

set Π containing the true parameter space Π∗.

(ii) supπ∈Π || ∂∂π
(

1
n

∑n
t=1+h

∂
∂ψ

[εt(ψ, π)εt−h(ψ, π)]
∣∣∣
ψ=ψ0,n

−Dn(h, ψ0,n, π)
)
|| = Op(1).

(iii) The non-stochastic function D̃n(h, ψ, π) = Eγn

[
∂
∂ψ

∂
∂ψ′

(
εt(ψ, π)εt−h(ψ, π)

)]
is continuous

at ψ0,n and is differentiable a.s. on an open, convex set Θ0 containing the true parameter

space Θ∗.

(iv) supπ∈Π supψ∈Ψ(π) || ∂∂θZn(h, ψ, π)||

= supπ∈Π supψ∈Ψ(π) || ∂∂θ
(

1
n

∑n
t=1+h

∂
∂ψ

∂
∂ψ′

[εt(ψ, π)εt−h(ψ, π)]− D̃n(h, ψ0,n, π)
)
|| = Op(1).

(v) Eγn
[
εt(ψ0,n, π)εt−h(ψ0,n, π)− εtεt−h

]
= O(1/

√
n)

Assumption 10 (Rs). Under {γn} ∈ Γ(γ0,∞, ω0),

(i) the non-stochastic function Dθn(h) = Dθn(h, θn) ≡ Eγn [ ∂
∂θ

(εt(θ)εt−h(θ))]
∣∣∣
θ=θn

exists.

(ii) The non-stochastic function D̃θn(h, θ) = Eγn

[
∂
∂θ

∂
∂θ′

(
εt(θ)εt−h(θ)

)]
is continuous at θn and

is differentiable a.s. on an open, convex set Θ0 containing the true parameter space Θ∗.

(iii) supθ∈Θ || ∂∂θZ
θ
n(h, θ)|| = supθ∈Θ || ∂∂θ

(
1
n

∑n
t=1+h

∂
∂θ

∂
∂θ′

[εt(θ)εt−h(θ)]−D̃n(h, θn)
)
|| = Op(1).

Remark 3. Assumption 9(i) implies that εt(ψ, π)εt−h(ψ, π) is stationary and ergodic, and As-

sumptions 9(i) and (ii) imply ∂
∂ψ

[εt(ψ, π)εt−h(ψ, π)] is stationary and ergodic since the derivative

is a measurable transformation. Assumption 9(iv) is a technical condition that is necessary in or-

der to establish stochastic equicontinuity for a uniform law of large numbers (e.g. Newey (1991)).

Considering the least squares case with h = 0 would indicate that ∂
∂ψ′

∂
∂ψ

[εt(ψ, π)2] is the Hessian
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of the objective function, so the assumption does not appear to be very restrictive. In many example

applications, these conditions hold as a result of the conditions needed to establish the asymptotic

results for the estimators (e.g. Assumption 5).

Remark 4. Assumption 9(v) must be verified for the chosen model εt(θ). It is often easy to verify

in specific models. Further, recall that εt(ψ0,n, π) does not depend on π under Assumption 3;

however, εt(ψ0,n, π) does depend on the true parameter πn. Thus, we only require the quantity to

be O(1/
√
n) and do not require uniformity over Π. For example, consider the two example models

(a) STAR(1) and (b) ARMA(1,1).

Example 3 (Scalar Non-linear Regression Model). The Scalar Non-linear Regression Model

is εt(θ) = yt − βxtg(xt, π) − ξxt. Then εt(θn) = yt − βnxtg(xt, πn) − ξnxt = εt and

εt(ψ0,n, π) = yt − ξnxt = βnxtg(xt, π) + εt. To verify Assumption 9(v), use
√
nβn → b, sta-

tionarity, ergodicity, moment bound assumptions and the construction of the model to see that

under H0,
√
n
[
Eγn(εt(ψ0,n, π)εt−h(ψ0,n, π))− E(εtεt−h)

]
= bζh−1E[ε2

tg(xt, π0)] + op(1).

Example 4 (ARMA(1,1)). The ARMA(1,1) model, yt = (β + π)yt−1 + εt − πεt−1, can be written

εt(θ) = yt − β
∞∑
j=1

πj−1yt−j . Then εt(βn, πn) = yt − βn
∞∑
j=1

πj−1
n yt−j ≡ εt and εt(0, πn) = yt =

βn
∞∑
j=1

πj−1
n yt−j + εt. To verify Assumption 9(vi), we can show that under H0,

√
n
[
Eγn(εt(ψ0,n, π)εt−h(ψ0,n, π))− E(εtεt−h)

]
= b

h∑
j=1

πj−1
n Eγn [yt−jεt−h] + op(1).

2.3.2 Main Results

Due to the inconsistency of π̂n under weak identification, we must consider the two cases (i)

{γn} ∈ Γ(γ0, 0, b) with ||b|| < ∞ , which we colloquially refer to as weak identification, and

(ii) {γn} ∈ Γ(γ0,∞, ω0), which we refer to as strong identification, in the analysis of our test

statistic. We operate on a first order expansion of our test statistic that differs depending on the

identification case, so we refer to the approximations rθt (h) and rψt (h, π), defined under strong and

weak identification respectively:

rθt (h) =
εtεt−h − E[εtεt−h]−Dθ(h)′J−1(γ0)mθ

t

E[ε2
t ]
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rψ,nt (h, π) =
εt(ψ0,n, π)εt−h(ψ0,n, π)− E[εtεt−h]−D(h, π)′H−1(π; γ0)mψ

t (ψ0,n, π)

E[ε2
t ]

Define under strong and weak identification, respectively, zθt (h) = rθt (h) − ρ(h)rθt (0) and

zψ,nt (h, π) = rψ,nt (h, π)− ρ(h)rψ,nt (0, π).

Define Zθn(h) = 1√
n

∑n
t=1+h z

θ
t (h) and Zψn (h, π) = 1√

n

∑n
t=1+h z

ψ,n
t (h, π).

Assumption 11. Let L, K ∈ N, and let λ = [λh]
L
h=1 ∈ RL and a ∈ RK . Then

(i) Take {π1, . . . , πK} ∈ Π⊗K . Under {γn} ∈ Γ(γ0, 0, b) with ||b|| <∞,

lim inf
n→∞

inf
λ′λ=1

inf
a′a=1

inf
π∈Π

E
[( L∑

h=1

K∑
k=1

λhakZψn (h, πk)
)2]

> 0,

and

(ii) under {γn} ∈ Γ(γ0,∞, ω0), lim infn→∞ infλ′λ=1 E[(
∑L

h=1 λhZθn(h))2] > 0.

Remark 5. Non-degenerate asymptotic variance in a standard assumption in the literature. See

e.g. Hill and Motegi (2018).

The following Lemma provides the approximations that are used to bootstrap the test statistic.

Lemma 2.3.1. Let Assumptions 3 - 11 hold. For some non-unique sequence of positive integers

{Ln} with Ln →∞ and Ln = o(n),

(a) under {γn} ∈ Γ(γ0, 0, b) with ||b|| <∞,

∣∣∣ max
1≤h≤Ln

sup
π∈Π

(
√
n|ρ̂n(h; π)− ρ(h)|)− max

1≤h≤Ln
sup
π∈Π

(|Zψn (h, π)|)
∣∣∣

≤ max
1≤h≤Ln

sup
π∈Π

(|
√
n(ρ̂n(h; π)− ρ(h))−Zψn (h, π)|) p−→ 0.

(b) under {γn} ∈ Γ(γ0,∞, ω0),

∣∣∣ max
1≤h≤Ln

(
√
n|ρ̂n(h)−ρ(h)|)− max

1≤h≤Ln
(|Zθn(h)|)

∣∣∣ ≤ max
1≤h≤Ln

(|
√
n(ρ̂n(h)−ρ(h))−Zθn(h)|) p−→ 0.
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The limiting distribution of the test statistic under strong identification is established in a

similar fashion to Hill and Motegi (2018); however, illuminating the limiting distribution under

weak identification require that we decompose rψ,nt (h, π) by adding and subtracting εtεt−h and

D(h, π)′H−1(π; γ0)Eγn [mψ
t (ψ0,n, π)], and then performing a mean value expansion on

Eγn [mψ
t (ψ0,n, π)] about γ0,n.7 This yields the following quantities:

rψ,nt (h, π) =
εtεt−h − E[εtεt−h]

E[ε2
t ]

−
D(h, π)′H−1(π; γ0)

(
mψ
t (ψ0,n, π)− Eγn [mψ

t (ψ0,n, π)]
)

E[ε2
t ]

+
εt(ψ0,n, π)εt−h(ψ0,n, π)− εtεt−h

E[ε2
t ]

−
D(h, π)′H−1(π; γ0)

(
βn

∂
∂β̃
Eγ̃n [mψ

t (ψ0,n, π)]
)

E[ε2
t ]

= r1,ψ,n
t (h, π) + r2,ψ,n

t (h, π)

where r1,ψ,n
t (h, π) = εtεt−h−E[εtεt−h]

E[ε2t ]
− D(h,π)′H−1(π;γ0)

(
mψt (ψ0,n,π)−Eγn [mψt (ψ0,n,π)]

)
E[ε2t ]

and r2,ψ,n
t (h, π) =

εt(ψ0,n,π)εt−h(ψ0,n,π)−εtεt−h
E[ε2t ]

−
D(h,π)′H−1(π;γ0)

(
βn

∂
∂β̃
Eγ̃n [mψt (ψ0,n,π)]

)
E[ε2t ]

.

Next, define zi,ψ,nt (h, π) = ri,ψ,nt (h, π) − ρ(h)ri,ψ,nt (0, π) for i = 1, 2, and observe that

zψ,nt (h, π) = z1,ψ,n
t (h, π) + z2,ψ,n

t (h, π). Finally, define Z i,ψn (h, π) = 1√
n

∑n
t=1+h z

i,ψ,n
t (h, π) for

i = 1, 2. We show in Lemma A.1.2 that Z1,ψ
n (h, π) converges weakly to a Gaussian process and

Z2,ψ
n (h, π) converges uniformly in probability to a mean component. This leads to the following

theorem stating the limit of the test statistic under H0.

Theorem 2.3.2. Let H0 and Assumptions 3, 7, and 8 hold.

(a) Let {γn} ∈ Γ(γ0, 0, b) with ||b|| < ∞, and additionally let Assumptions 1, 4(i), 5, 9, and

11(i) hold. Let {Zψ(h, π) : h ∈ N, π ∈ Π} be a Gaussian process with finite mean

lim
n→∞

√
nEγn(r2,ψ,n

t (h, π))<∞ and variance lim
n→∞

1
n

∑n
s,t=1Eγn [r1,ψ,n

s (h, π)r1,ψ,n
t (h, π)] <∞

and covariance kernel lim
n→∞

1
n

∑n
s,t=1 Eγn [r1,ψ,n

s (h, π) r1,ψ,n
t (h̃, π̃)]. Then for some non-unique

7See Andrews and Cheng (2012a,b), especially Lemma 9.1.
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sequence of positive integers {Ln} with Ln →∞ and Ln = o(n),

sup
π∈Π

∣∣∣ max
1≤h≤Ln

(
√
n|ρ̂n(h, π)− ρ(h)|)− max

1≤h≤Ln
(| 1√

n

n∑
t=1+h

rψ,nt (h, π)|)
∣∣∣ p−→ 0 and

∣∣∣ max
1≤h≤Ln

| 1√
n

n∑
t=1+h

rψ,nt (h, π̂n)| − max
1≤h≤Ln

|Zψ(h, π∗(b, γ0))|
∣∣∣ p−→ 0.

(b) Let {γn} ∈ Γ(γ0,∞, ω0), and additionally let Assumptions 2, 4(ii), 6, 10, and 11(ii) hold. Let

{Zθ(h) : h ∈ N} be a zero mean Gaussian process with variance lim
n→∞

1
n

∑n
s,t=1E[rθs(h)rθt (h)]

<∞ and covariance kernel lim
n→∞

1
n

∑n
s,t=1E[rθs(h)rθt (h̃)]. Then for some non-unique sequence

of positive integers {Ln} with Ln →∞ and Ln = o(n),

∣∣∣ max
1≤h≤Ln

(
√
n|ρ̂n(h)− ρ(h)|)− max

1≤h≤Ln
(| 1√

n

n∑
t=1+h

rθt (h)|)
∣∣∣ p−→ 0 and

∣∣∣ max
1≤h≤Ln

| 1√
n

n∑
t=1+h

rθt (h)| − max
1≤h≤Ln

|Zθ(h)|
∣∣∣ p−→ 0.

The limiting distribution of the test statistic under true {γn} ∈ Γ(γ0,∞, ω0) is the maximum

of a Gaussian process. However, the limiting distribution of the test statistic under true {γn} ∈

Γ(γ0, 0, b) with ||b|| < ∞ is the maximum of a Gaussian process on Π evaluated at π∗(γ0, b).

Further, the bias term lim
n→∞

√
nEγn(r2,ψ,n

t (h, π)) is present under weak identification, whereas the

limiting distribution under strong identification has mean zero. This mandates a different method

for implementing the bootstrap under each identification scenario, as we describe in Section 2.4.1.

The limiting processes differ under weak and strong identification due to the inconsistency of

π̂n and the nonstandard limiting process of ψ̂n under the case in which π0 is weakly identified. In

particular, when π0 is weakly identified, we must expand around ψ0,n, the subvector of the true

parameter θn with βn evaluated at the point of non-identification of π0.

The finding that the limiting distribution of the white noise test statistic differs depending upon

whether or not a consistent estimator is available for the potentially unidentified parameters gives

us reason to believe that standard testing procedures may yield distorted inference. In particular,
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it is well known that the distributions of the parameter estimators differ depending upon the iden-

tification strength of potentially unidentifiable parameters in the model, and standard inference on

the parameters based on t or χ2 distributions can be distorted when the model contains parameters

that are weakly identified. Andrews and Cheng (2012a) demonstrate that densities of the estima-

tors from an ARMA(1,1) model can be quite far from normal when the AR and MA parameters

are close to the same value, and Cheng (2015) shows that using standard normal critical values

for tests on a parameter from an additive nonlinear model with a weakly identified parameter can

generate large size distortions. As shown in our Theorem 2.3.2, the impact of identification failure

on the distributions of the estimators for a model can be noticed beyond tests on the parameter

values. Our ARMA(1,1) model simulations indicate that that this difference can manifest itself in

an empirically relevant way, leading to size distortions in white noise tests that ignore the effect of

potential identification failure in the model.

2.3.3 Critical Values

Manufacturing a test that is robust to identification failure requires that we account for the

possibility that our test statistic falls within the limiting distributions given by either identification

regime. To this end, our bootstrapping procedure provides critical values under both situations.

We then construct an identification robust critical value for our test statistic by stitching together

the critical values found under each identification scenario using methods detailed in Andrews and

Cheng (2012a).

We employ two types of robust critical values: least favorable (LF) and identification-category

selection (ICS) critical values. The LF critical values always take the larger of the critical values

found under each identification category, whereas the ICS critical values employ a data driven first

step to determine if b = lim
n→∞

√
nβn is finite or infinite.

Least Favorable Critical Values

Let c(w)
1−α be the critical value under {γn} ∈ Γ(γ0, 0, b) with ||b|| < ∞, and let c(s)

1−α be

the critical value under {γn} ∈ Γ(γ0,∞, ω0). The least favorable critical value is c(LF )
1−α =

max{c(w)
1−α, c

(s)
1−α}. We reject the null hypothesis when T̂n > c

(LF )
1−α .
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Data Dependent Critical Values

The least favorable critical values can be improved by use of an identification-category-

selection procedure outlined in Andrews and Cheng (2012a). The ICS procedure uses the avail-

able data to determine if b is finite, and hence whether {γn} ∈ Γ(γ0, 0, b) with ||b|| < ∞ or

{γn} ∈ Γ(γ0,∞, ω0). The LF critical value is used if the selection procedure suggests that b is

finite, and the critical value under ||b|| = ∞ is used otherwise. The statistic used for category

selection is

An = (nβ̂′nΣ̂−1
ββ,nβ̂n/dβ)1/2

where Σ̂ββ,n is the upper left dβ × dβ block of Σ̂n = Ĵ−1
n V̂nĴ

−1
n , the estimator of the covariance

matrix Σn(γ0) = J−1(γ0)V (γ0)J−1(γ0).

Let {κn : n ≥ 1} be a sequence of constants that diverge to infinity as n→∞. We compare the

statistic An to this sequence of tuning parameters in order to determine the identification category.

Since An = Op(1) under {γn} ∈ Γ(γ0, 0, b) with ||b|| < ∞, this procedure consistently selects

this category when κn →∞.

Assumption 12. κn →∞ and κn/n1/2 → 0.

Assumption 12 is Assumption K in Andrews and Cheng (2012a).

The ICS critical value is c(ICS)
1−α =


c

(LF )
1−α if An ≤ κn

c
(s)
1−α if An > κn.

.

Asymptotic Size

Let Fγ be the distribution function ofWt under some γ ∈ Γ∗, for the true parameter space Γ∗,

and let Pγ denote probability under Fγ . For any critical value, c1−α,n, the asymptotic size of the

test is the maximum rejection probability over Γ∗ such that the null hypothesis is true:

AsySz = lim sup
n→∞

sup
γ∈Γ∗

Pγ(Tn > c1−α,n| H0).
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Assumption 13. If c(·)
1−α,n is (i) LF or (ii) ICS, then assume that Andrews and Cheng’s (2012a)

Assumption (i) LF or (ii) K and V3 hold, respectively.

Theorem 2.3.3. Under Assumptions 12 and 13 and H0, the LF and ICS critical values c(·)
1−α,n

satisfy AsySz = α.

The proof of Theorem 2.3.3 is omitted as it follows directly from Andrews and Cheng (2012a).

2.4 Bootstrap Critical Value Computation

Standard arguments for critical value computation rely on computation of the exact limiting

distribution of the test statistic by appealing to the extremal types theorem (see e.g. Xiao and Wu

(2014); de Haan (1976)). Recent work for high dimensional statistics has focused on by-passing

extreme value theory but has been limited by not allowing for dependence or residuals or by only

allowing for Gaussian approximation (Chernozhukov et al., 2013, 2017; Zhang and Cheng, 2018;

Zhang and Wu, 2017). Theory in Hill and Motegi (2018) and Hill and Dennis (2018) allows for

dependence under the null, residuals, and does not require Gaussianity. Here, we side-step the

extreme value theory asymptotics by using the approach found in Hill and Motegi (2018) and Hill

and Dennis (2018) paired with the dependent wild bootstrap of Shao (2010, 2011a).

The wild bootstrap is a multiplier bootstrap. Wu (1986) and Liu (1988) detail the classic wild

bootstrap for iid sequences. Hansen (1996) allows for adapted martingale difference sequences,

and Shao (2010, 2011a) allows for dependent sequences. Shao (2010) uses iid random draws as

weights with a kernel function, but does not allow for a truncated kernel. Shao (2011a) uses a

truncated kernel function.

In order to compute robust critical values, we consider least favorable (LF) and information

criteria selection (ICS) critical values. This involves computation of critical values under both weak

and strong identification. We follow Shao (2011a) to compute critical values under each scenario.

Below, we first elucidate the algorithm used to perform the bootstrap under each identification

scenario. Then we discuss critical value computation.
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2.4.1 Bootstrap Algorithm

Here we detail the bootstrap algorithm for computing critical values under {γn} ∈ Γ(γ0, 0, b)

with ||b|| <∞ (weak identification) and {γn} ∈ Γ(γ0,∞, ω0) (strong identification).

First, we draw standard normal random variables with perfect dependence within blocks and

independence across blocks. This sequence of random normals forms the Gaussian multiplier used

in the wild bootstrap of Shao (2011a). It is important to note that the multiplier random variables

need not be Gaussian; however Gaussianity greatly simplifies arguments in the proofs.

Begin by selecting a block size kn s.t. 1 ≤ kn ≤ n, kn → ∞, and kn/n → 0. Define blocks

by Bs = {(s − 1)kn + 1, . . . , skn} for s = 1, . . . , n/kn. Generate iid N(0, 1) random variables

{ξ̃1, . . . , ξ̃n/kn} and define zt = ξ̃s if t ∈ Bs.

The bootstrapped critical values must be computed separately for each identification scenario.

The algorithms, which we detail next, are similar under weak and strong identification. They differ

due to the different expansions needed in order to account for the impact of parameter estimation

on the residuals.

Weak Identification

Under strong identification, the bootstrap only needs to replicate the randomness underlying

εtεt−h and mθ
t . However, under weak identification, an additional source of randomness is present

due to the inconsistency of π̂n. Therefore, the bootstrap under weak identification must also repli-

cate the underlying randomness from the limiting distribution π∗(b, γ0). Further, the additional bias

terms arise in the first order expansion under the case of weak identification that are not present

under strong identification. The bootstrap will replicate these sources of randomness in two steps.

First, we simulate a random draw, π∗(bs)(b, γ0), from the distribution π∗(b, γ0) by using the draws

zt mentioned above. Next, we use π∗(bs)(b, γ0) to construct the components of our test statistic under

weak identification, which are functions of π. Then we again use the draws zt to construct the wild

bootstrap version of the test statistic. Finally, b and γ0 are nuisance parameters that we must deal

with. The algorithm is as follows.

First, compute Ĥn(π) and K̂n(π; γ0). For example, in the STAR(1) model, Ĥn(π) = 1
n

∑n
t=1

dψ,t(π)dψ,t(π)′ and K̂n(π; γ0) = 1
n

∑n
t=1 dψ,t(π)x′tg(zt, π0).
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Next, recall that Ω(π, π̃; γ0) = E[G(π; γ0)G(π̃; γ0)] is the a.s. p.d. covariance ker-

nel for G(·; γ0). Recall also that Gn(π; γn) = 1√
n

∑n
t=1 m

ψ
t (π). Compute Ĝ

(bs)
n (π) =

1√
n

∑n
t=1 zt

[
mψ
t (π)− 1

n

∑n
t=1m

ψ
t (π)

]
. In the STAR(1) model,

Ĝ
(bs)
n (π) = 1√

n

∑n
t=1 zt

[
dψ,t(π)εt(ψ̂0,n(π), π) − 1

n

∑n
t=1

[
dψ,t(π)εt(ψ̂0,n(π), π)

]
.

Define

ξ(bs)
n (π; γ0, b) = −1

2

(
Ĝ(bs)
n (π) + K̂n(π; γ0)b

)′
(Ĥn(π))−1

(
Ĝ(bs)
n (π) + K̂n(π; γ0)b

)
,

and compute π∗(bs)(γ0, b) = argmin
π∈Π

ξ
(bs)
n (π; γ0, b).

Now use π∗(bs)(γ0, b) and ψ̂0,n to compute the quantities

Gn(π∗(bs)) = (Ĥn(π∗(bs)))
−1
[
mψ
t (ψ̂0,n, π

∗
(bs))−

1

n

n∑
t=1

mψ
t (ψ̂0,n, π

∗
(bs))

]

and

D̂n(h, π∗(bs)) =
1

n

n∑
t=1+h

[dψ,t(π
∗
(bs))εt−h(ψ̂0,n, π

∗
(bs)) + dψ,t−h(π

∗
(bs))εt(ψ̂0,n, π

∗
(bs))].

Define

Êt,h(ψ, π) = εt(ψ, π)εt−h(ψ, π)− Gn(π∗(bs))
′D̂n(h, π∗(bs))

− 1

n

n∑
t=1+h

[εt(ψ, π)εt−h(ψ, π)− εtεt−h],

and the draws {zt} to define

ρ̂(w)
n (h; γn, b) =

1

n−1
∑n

t=1 ε
2
t (θ̂n)

×

{
1

n

n∑
t=1+h

zt

(
Êt,h(ψ̂0,n, π

∗
(bs))−

1

n

n∑
t=1+h

Êt,h(ψ̂0,n, π
∗
(bs))

)
− ((Ĥn(π∗(bs)))

−1K̂n(π; γn)
b√
n

)′D̂n(h, π∗(bs))

+
1

n

n∑
t=1+h

[εt(ψ̂0,n, π)εt−h(ψ̂0,n, π)− εtεt−h]

}
.
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Observe that we subtract 1
n

∑n
t=1+h[εt(ψ, π)εt−h(ψ, π)] from the component that will multi-

plied by the random variable zt, and then add 1
n

∑n
t=1+h[εt(ψ, π)εt−h(ψ, π)] after. Recall that the

distribution of the test statistic has mean lim
n→∞

√
nEγn [εt(ψ0,n, π

∗)εt−h(ψ0,n, π
∗)], hence the reason

for adding the quantity after multiplication by zt. We must subtract the quantity prior to multiplica-

tion as failing to do so will bias the variance of the bootstrapped distribution, since the variance in

the distribution of the test statistic is based on εtεt−h, but our critical values are constructed using

εt(ψ̂0,n, π̂n)εt−h(ψ̂0,n, π̂n).

We now define the bootstrapped test statistic T̂ (w)
n (γn, b) = max1≤h≤Ln |

√
n ρ̂

(w)
n (h; γn, b)|.

Critical value construction, which is based on order statistics of repeated draws of T̂ (w)
n (γn, b), is

defined below. Observe that the bootstrapped test statistic is a function of the nuisance parameters

(πn, b) which cannot be consistently estimated. Therefore, we will define the α-level critical value

c
(w)
n,1−α = supπn,b c

(w)
n,1−α(γn, b).

Strong Identification

The procedure for generating bootstrapped test statistics under the case of (semi-) strong iden-

tification is similar to that under weak identification; however, π̂n consistently estimates the true

value πn in this case. Due to this, we simply use the full estimated parameter vector θ̂n, as the layer

involving generation of random draws from the distribution π∗(γ0, b) is not warranted. In addition,

the test statistic has mean zero, so the bootstrap test statistic follows a simpler construction.

Compute Ĵn(θ̂n) and D̂θn(h, θ̂n) = 1
n

∑n
t=1+h[dθ,t(θ̂n)εt−h(θ̂n) + dθ,t−h(θ̂n)εt(θ̂n)]. Define

Êt,h(θ) = εt(θ)εt−h(θ)− (B(β̂n)−1D̂θn(h, θ))′(Ĵn(θ̂n))−1mθ
t (θ). Use the draws {zt} to define

ρ̂(s)
n (h) =

1

n−1
∑n

t=1 ε
2
t (θ̂n)

×

{
1

n

n∑
t=1+h

zt

(
Êt,h(θ̂n)− 1

n

n∑
t=1+h

Êt,h(θ̂n)
)}

Finally, define the bootstrapped test statistic T̂ (s)
n = max1≤h≤Ln |

√
n ρ̂

(s)
n (h)|. Observe that

there are no nuisance parameters in this case.

Remark 6. Note that our bootstrapped test statistics rely on sample versions of the first order

expansion εtεt−h − Dθ(h)J−1mθ
t as in Hill and Motegi (2018). It is incorrect to simply use
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εt(θ̂n)εt−h(θ̂n) without the term from the first order expansion since the bootstrap multiplier ran-

dom variables zt are mean zero and independent of the data. One can show that

1
n

∑n
t=1+h ztεt(θ̂n)εt−h(θ̂n) = 1

n

∑n
t=1+h εtεt−h + op(1/

√
n), whereas first order arguments show

1
n

∑n
t=1+h εt(θ̂n)εt−h(θ̂n) = 1

n

∑n
t=1+h εtεt−h+Op(1/

√
n). Ignoring the first order expansion term

therefore results in loss of information from the estimator θ̂n.

The same argument applies to the case of weak identification. The fact that the limiting distri-

bution of the estimator differs under weak identification is precisely why Hill and Motegi (2018)

cannot accommodate weakly identified models.

Critical Value Computation

Repeat the above procedures i = 1, . . . ,M times to define {T̂ (s)
n,i }Mi=1 and {T̂ (w)

n,i (γn, b)}Mi=1.

For k = w, s, define the order statistics {T̂ (k)
n,(i)}Mi=1 such that T̂ (k)

n,(1) ≤ T̂
(k)
n,(2) ≤ · · · ≤ T̂

(k)
n,(M).

The approximate α-level critical values under weak and strong identification, respectively, are

ĉ
(w)
n,1−α(γn, b) = T̂ (w)

n,[(1−α)·M ](γn, b) and ĉ(s)
n,1−α = T̂ (s)

n,[(1−α)·M ]. Observe that the α-level critical value

under weak identification is nuisance parameter dependent. Therefore, define the approximate

α-level critical value ĉ(w)
n,1−α = supπn,b ĉ

(w)
n,1−α(γn, b).

Theorem 2.4.1. Let Assumptions 1 - 11 hold, and let the number of bootstrap samples Mn →∞.

Under {γn} ∈ Γ(γ0, 0, b) with ||b|| < ∞, let k = w and under {γn} ∈ Γ(γ0,∞, ω0), let k = s.

There is a non-unique sequence of positive integers {Ln} with Ln →∞ and Ln = o(n) such that

ĉ
(k)
1−α,n

p−→ c
(k)
1−α.

Moreover, under the alternative hypothesis, P (T̂n > ĉ
(k)
1−α,n)→ 1 for k = w and k = s.

The bootstrapped critical values are constructed assuming the null hypothesis is true. Theorem

2.4.1 shows that the bootstrapped critical values are consistent for the critical values from the null

limiting distribution of the test statistic. This indicates that under H0, the test achieves correct size

asymptotically when the correct (e.g. either weak or strong) critical value is used. Theorem 2.3.3

then allows us to construct correctly sized tests by combining these critical values into LF and ICS

critical values.

Further, since the tests based on weak and strong critical values are both consistent against
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the alternative hypothesis, tests based on the LF and ICS critical values are also consistent against

the alternative. Note that the critical values are dependent upon the sequence {h : 1 ≤ h ≤

Ln} because they are computed using the sample correlations out to lag Ln. This dependence is

suppressed in the notation of Theorem 2.4.1.

2.5 Simulations

In this section we perform Monte-Carlo experiments to demonstrate the benefits of our ro-

bust max-correlation test. We perform simulations assuming that the true nuisance parameters are

known, which we call infeasible simulations, and we perform simulations using a grid of π and b

to calculate correlation expansions under weak identification, which we call feasible simulations.

We simulate J = 1000 samples to be used in infeasible simulations and J = 500 samples to be

used in feasible simulations of size n ∈ {100, 250, 500, 1000} from the following processes:

STAR(1): yt = βnyt−1(1 + exp(−10(yt−1)))−1 + .5yt−1

ARMA(1,1): yt = (βn + .5)yt−1 + εt − .5εt−1

for values of βn ∈ {0, .3/
√
n, .3} that satisfy identification failure, weak identification, and

strong identification, respectively. The STAR(1) model is estimated via least squares, and the

ARMA(1,1) model is estimated with an ARMA(1,1) filter by QML. Recall that when βn = 0, the

ARMA(1,1) model reduces to the process yt = εt; hence πn is not identifiable.

Both the ARMA and Smooth Transition Regression (STR) models have been highly use-

ful models to practitioners for decades. In particular, Andrews and Ploberger (1996) note that

AMRA(1,1) models provide parsimonious representations of many different stationary time se-

ries. Poterba and Summers (1988) show that many mean-reverting financial time series can be

represented by ARMA(1,1) models, and Taylor (2005) shows that the ARMA model can be used

to represent certain price-trend models.

STR models have spawned a broad class of time series representations. The Logistic STAR

(LSTAR) model that we examine in these simulations has been used to model business cycle asym-

metry with regimes associated with recession and expansions (Teräsvirta and Anderson, 1992;
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Skalin and Teräsvirta, 2001). When the variable controlling the speed of transition approaches in-

finity, the logistic function approaches an indicator function; hence, the LSTAR model itself nests

many Threshold Autoregressive (TAR) models as a special case. See Hansen (2011) for a survey

of the history of TAR models in Economics.

Changing the transition function leads to other classes of STR models that have been used

to model other phenomena. Exponential STAR models have been used to explain the nonlinear

dependence of the real exchange rate on the size of the deviation from purchasing power parity,

and higher order logistic functions have been used to allow multiple switches between regimes.

Multiple regime models (van Dijk and Franses, 1999) have also been explored to describe business

cycle nonlinearity, and Multiple Regime STAR models have been shown to nest many models as

special cases, including certain types of artificial neural networks.8 Taking the transition variable to

be time leads to the time-varying STAR model (Lundbergh, Teräsvirta, and van Dijk, 2000), which

is related to structural instability of a time series, and has been used to study seasonal patterns

in industrial production (van Dijk, Strikholm, and Teräsvirta, 2001). STAR models have been

extended to allow cointegration and error-correction models in vector frameworks as well.9

With ARMA, STR and STAR models and similar models, it is common to assume that the

errors εt are martingale difference sequences.10 This leads to a natural model diagnostic test in the

form of a test of no serial correlation in the errors.

Let νt ∼ iidN(0, 1). For the error εt, we consider several different processes: 3 null hypothesis

models and several alternative hypothesis models designed to provide alternatives that vary in

difficulty for the tests to discover. We consider the following 3 null hypothesis models (H0):

iid: εt = νt

8Artificial neural networks can be used to approximate continuous functions to an arbitrary degree of accuracy.
See Kuan and White (1994) for a review of ANNs.

9e.g. Taylor, van Dijk, Franses, and Lucas (2000) use a Smooth Transition Error Correction Model to examine
the relationship between spot and futures prices of the FTSE 100, Anderson (1997) and van Dijk and Franses (2000)
examine the term structure of interest rates, Swanson (1999) and Rothman, van Dijk, and Franses (2001) examine the
relationship between money and output, and Dwyer, Locke, and Yu (1996), Martens, Kofman, and Vorst (1998) and
Tsay (1998) examine spot and futures prices of the S&P 500.

10see e.g. Nankervis and Savin (2010), Terasvirta (1994); Teräsvirta (1998) and the review by van Dijk et al. (2002).
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GARCH(1,1): εt = σtνt, σ2
t = 1 + .3ε2

t−1 + .6σ2
t−1

Bilinear: εt = .5εt−1νt−1 + νt

and the following alternative hypotheses (HA):

AR(2): εt = .5εt−2 + νt

MA(1): εt = .5νt−1 + νt

MA(10): εt = .5νt−10 + νt

MA(21): εt = .5νt−21 + νt

In order to examine power against distant alternatives for the longer sample lengths, we addi-

tionally consider a MA(50) alternative when n = 500 and a MA(100) alternative when n = 1000.

We perform the identification-robust Max Correlation test using both Least Favorable (LF) and

Identification Category Selection (ICS) critical values. Futher, we perform Hong’s (1996) Stan-

dardized Ljung-Box Q test (LBQ), Shao’s (2011a) Cramér von Mises Test (CvM), and Nankervis

and Savin’s (2010) representation of Andrews and Ploberger’s (1996) sup-LM test (supLM). For

all tests, we report rejection frequencies for both feasible and infeasible tests based on ICS, LF,

strong identification critical values only (S), and critical values obtained without using a first order

expansion (NoX). Note that the Max Correlation test in Hill and Motegi (2018) is simply the Max

Correlation utilizing the strong identification critical values only, so the tests labeled “MC S” cor-

respond to this test. Additionally, for comparison with Hill and Motegi (2018), we report p-value

based rejection frequencies in the supplemental appendix.

To satisfy space requirements, a selection of critical value based rejection frequency tables for

n = 100 and n = 500 under weak id are presented in section 2.5.1. All tables are presented in the

supplemental appendix.

Max Correlation Test The max-correlation tests require a lag lengthLn. We used a fixedLn = 5

and sample size dependentLn ∈ {[n1/3], [
√
n/(ln(n)/4)], [

√
n/(ln(n)/5)], [

√
n−1], [.5n/ ln(n)]}.

This implies that Ln ∈ {4, 5, 8, 9, 10} when n = 100, Ln ∈ {5, 6, 11, 14, 22} when n = 250, Ln ∈

37



www.manaraa.com

{5, 7, 14, 17, 21, 40} when n = 500, Ln ∈ {5, 9, 18, 22, 30, 72} when n = 1000. Additionally,

we use Ln = [n/ ln(n)] when n = 500, 1000 leading to lag lengths 80 and 144, respectively.

We expect visible size distortions with the longer lag selections for the larger sample sizes; in

particular, we expect the sampling error at longer lags to lead the max statistic to exhibit larger

variance yielding under-sized tests. The test statistic is
√
nmax1≤h≤Ln |ρ̂n(h)|.

Infeasible critical values, for which the nuisance parameters are known, are computed by de-

pendent wild bootstrap with M = 1000 bootstrap samples for T = 100, 250 and M = 500

bootstrap samples for T = 500, 1000 using the first order expansion given in Lemma 2.3.1. Due

to the greater computational requirements for computing the feasible critical values, for which all

correlations expansions under weak identification must be computed over a grid of π and b, we

use M = 500 bootstrap samples. For the DWB block size, we use kn = [
√
n], where [·] is the

truncation operator.

Standardized Ljung-Box Q Test The standardized Ljung-Box statistic is Nn =

(2Ln)−1/2
∑Ln

h=1wn(h){nρ̂2
n(h) − 1} where wn(h) = (n + 2)/(n − h). Under Hong’s (1996)

assumptions, Nn
d−→ N(0, 1) when the null hypothesis is true and the {nρ̂2

n(h) : 1 ≤ h ≤ Ln}

are asymptotically independent. This asymptotic independence typically fails for models with

martingale difference errors, so we expect this test to exhibit size distortions when εt is dependent

under H0 as with GARCH and bilinear errors. We perform a bootstrapped version of the test using

the Lemma 2.3.1 first order expansion.

Cramér-von-Mises Test Shao’s (2011a) statistic is Cn =
∫ π

0
S2
n(λ)dλ where Sn(λ) =

∑n−1
h=1

√
nR̂n(h)ψh(λ), R̂n(h) is the sample covariance, and ψn(λ) = (hπ)−1 sin(hλ) if h 6= 0 and

ψn(λ) = λ/(2π) if h = 0. We approximate the integral with the sum
∑3124

i=1 S
2
n(λi) and discretiza-

tion of λ by the grid λi = 0, .001, . . . , 3.141. We again implement the test with the DWB based on

the correlation expansion detailed in Lemma 2.3.1.

Sup LM Test The sup-LM test is based on Nankervis and Savin’s (2010) representation of An-

drews and Ploberger’s (1996) sup-LM statistic APn(n − 1) = supλ∈Λ LMn(λ, n − 1), where

LMn(λ, n− 1) = n(1− λ2)
[∑n−1

h=1 λ
h−1ρ̂n(h)

]2. The generalized AP test of Nankervis and Savin
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(2010) are consistent against all nonwhite noise alternatives and have good power against nonsea-

sonal alternatives compared to many other tests in the literature. We compute APn(Ln) with the

discretized parameter space Λ = [−.8,−.795, . . . , 0, .005, . . . , .8]. We implement the test with the

DWB based on the correlation expansion in Lemma 2.3.1.

2.5.1 Simulation Results: STAR(1) Model

Recall from remark 6 that ignoring the first order expansion term results in loss of information

from the estimator θ̂n, since the multipliers used in the bootstrap are mean zero and independent of

the data. Initial observations from the STAR(1) model indicate that the tests constructed without

use of the first order expansion may under perform in some situations. In particular, it appears

that the rejection frequency is usually lower than its expansion based counterparts. An exception

to this is found in the case of bilinear errors when we see that the NoX-based tests give higher

rejection frequencies, but this could be an empirical artifact due to a small number of simulations.

This lower rejection frequency is not noticeable under every alternative hypothesis scenario that we

consider; however, it is noticeable under the distant, weak alternatives considered in particular for

the sup LM and CvM tests. The sup LM and CvM tests perform poorly against such alternatives

in general.

Next, recall that the least favorable (LF) critical values are constructed by always taking the

larger of the critical values found assuming weak and strong identification, so we see that tests

based on these critical values tend to have lower rejection frequencies than other tests. The critical

values attained under weak identification tend to be larger than those attained under strong identi-

fication, so the effect is particularly prominent when the truth is strong identification. When π is

weakly identified, tests based on the LF critical values have rejection frequencies similar to those

based on the ICS critical values.

Interestingly, tests based on the LF critical values are the only tests that do not tend to over-

reject the null hypothesis under bilinear errors. In fact, in this situation, these tests always have near

zero rejection frequencies. It seems that under this specification, not only do the weak identification

critical values tend to be large under strong identification, but the strong identification critical

values also tend to be large under weak identification. This has the effect of causing the LF critical
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values to always be large, leading to very small rejection frequencies. Due to these issues and

those mentioned for the NoX based tests, we will not mention the LF or NoX based tests in the

discussion that follows.

Tests based on Identification-Category-Selection (ICS) critical values tend to perform fairly

well under the specifications tested here. Empirical size tends to be close to or less than nominal,

and power under the alternative hypothesis tends to be relatively high. Exceptions include the cases

in which we specify bilinear errors. Recall that bilinear {εt} is a non-mds white noise process;

hence it is a null hypothesis specification. However, our tests tend to exhibit much larger than

nominal rejection frequencies in this case. This does not seem to represent a disadvantage when

compared to tests based on other critical value constructions, as they all tend to perform poorly for

bilinear errors.

Table 2.1: White Noise Test Simulations - STAR model without expansion

No Id Weak Id Strong Id
MC NoX 0.04 0.03 0.04
LBQ NoX 0.03 0.02 0.02

sup LM NoX 0.02 0.01 0.02
CvM NoX 0.00 0.00 0.02

STAR model without expansion. Rejection Frequencies: Infeasible CV based Tests, STAR(1) model with
iid errors, α = 0.05, T = 500, Ln = 5, J = 500.

Table 2.2: White Noise Test Simulations - Least Favorable Critical Values

T = 100 T = 500

MC LF 0.02 0.01
LBQ LF 0.02 0.01

sup LM LF 0.00 0.00
CvM LF 0.01 0.01

STAR model under Strong Identification with LF CVs. Rejection Frequencies: Infeasible CV based Tests,
STAR(1) model with iid errors, Strong Identification, α = 0.05, Ln = 5, J = 500.

Recall that since the sup LM and CvM tests do not require a maximum lag, so we use a lag

length of n − 1 for these tests. the MC and LBQ tests, however, require specification of a lag

length, and we provide a range of lags to check finite sample performance. The most obvious
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observation is that we experience rejection frequency shrinkage across all specifications and critical

value constructions as Ln increases, holding n fixed. This affects specifications under both the null

and alternative hypotheses. It appears that this is an artifact of increasingly noisy estimates at

longer lags making their way into the critical values through the dependent wild bootstrap.

Now, recall that one of the primary reasons for considering a max test in this paper is that the

max test tends to offer sharper estimates at longer lags when compared to tests based on averages

of correlations, as the max test only relies on the most informative sample correlation estimate.

Due to this, we expect the issue of rejection frequency shrinkage to be less pronounced for the max

correlation test than for the LBQ test, a result that we do find in our simulations. The infeasible

ICS statistics tend to have close to nominal size at the shortest lag length tested, Ln = 5.

Table 2.3: White Noise Test Simulations - Size Shrinkage

Ln = 5 Ln = 22 Ln = 40 Ln = 80

MC ICS 0.04 0.02 0.01 0.01
LBQ ICS 0.02 0.00 0.00 0.00

Size Shrinkage in STAR-GARCH model under Weak Identification with ICS. Rejection Frequencies:
Infeasible CV based Tests, STAR(1) with GARCH(1,1) errors, Weak Identification, α = 0.05, T = 500,

J = 500.

For specifications in whichH0 is false, we see that MC as comparable pwoer to LBQ and some-

times smaller power than sup LM and CvM when the dependence under HA is easily detectable;

that is for error specifications with close dependence such as the AR(2) and MA(1). However, for

specifications with weak distant dependence, the max correlation test dominates the other tests.

This is due to the fact that the max correlation test utilizes the most informative sample correlation

estimate rather than smoothing over many possibly noisy estimates.

The maximum correlation test constructed using only the strong identification critical values

(MC S) is the test of Hill and Motegi (2018). We include tests constructed by using only strong

identification critical values in oder to compare the identification robust critical value based tests

to these tests and in particular to the test of Hill and Motegi (2018). We find that when π is

strongly identified, the ICS based tests are comparable to the tests that use only the critical values
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constructed under strong identification. This seems to indicate that the ICS selection procedure

works well in practice.

However, we also find that when π is non- or weakly-identified, the ICS based tests perform

similarly to the tests based on the strong identification critical values only. Hence, based on these

specifications, it appears that MC ICS does not dominate MC S under weak or non identification of

π. It is possible that this is an artifact of the chosen model specifications, as the simulations based

on the ARMA(1,1) model detailed below indicate that when using only the strong identification

expansion when the truth is weak identification results in size distortions under the null.

Table 2.4: White Noise Test Simulations - STAR model under Strong Identification

H0 True H0 False
Infeasible Infeasible Feasible

iid GARCH(1,1) AR(2) MA(10) AR(2) MA(10)
Ln = 5 Ln = 5 Ln = 5 Ln = 10 Ln = 5 Ln = 10

MC ICS 0.05 0.03 0.84 0.74 0.36 0.36
LBQ ICS 0.04 0.03 0.77 0.57 0.33 0.28

sup LM ICS 0.06 0.04 0.69 0.11 0.32 0.06
CvM ICS 0.00 0.00 0.00 0.00 0.00 0.01
MC LF 0.03 0.02 0.57 0.47 0.36 0.36
LBQ LF 0.02 0.02 0.53 0.31 0.33 0.28

sup LM LF 0.02 0.01 0.47 0.05 0.32 0.06
CvM LF 0.00 0.00 0.00 0.00 0.00 0.01

MC S 0.06 0.05 0.92 0.83 0.92 0.83
LBQ S 0.06 0.05 0.84 0.68 0.83 0.66

sup LM S 0.10 0.07 0.75 0.18 0.74 0.16
CvM S 0.01 0.01 0.01 0.01 0.01 0.01

MC NoX 0.03 0.03 0.87 0.81 0.86 0.79
LBQ NoX 0.04 0.02 0.75 0.61 0.75 0.59

sup LM NoX 0.04 0.03 0.63 0.08 0.65 0.07
CvM NoX 0.00 0.00 0.00 0.00 0.00 0.00

MC W 0.03 0.02 0.57 0.47 0.38 0.43
LBQ W 0.02 0.02 0.53 0.32 0.39 0.40

sup LM W 0.02 0.02 0.49 0.05 0.41 0.41
CvM W 0.13 0.13 0.10 0.15 0.37 0.41

Rejection Frequencies: Feasible CV based Tests, STAR1, Strong Id, α = 0.05, T = 100, βn = 0.300,
J = 500.
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Table 2.5: White Noise Test Simulations - STAR model under Weak Identification

H0 True H0 False
Infeasible Infeasible Feasible

iid GARCH(1,1) AR(2) MA(10) AR(2) MA(10)
Ln = 5 Ln = 5 Ln = 5 Ln = 10 Ln = 5 Ln = 10

MC ICS 0.04 0.03 0.89 0.78 0.24 0.20
LBQ ICS 0.03 0.03 0.83 0.63 0.26 0.13

sup LM ICS 0.06 0.05 0.79 0.12 0.26 0.02
CvM ICS 0.00 0.00 0.00 0.00 0.00 0.00
MC LF 0.04 0.03 0.84 0.74 0.24 0.20
LBQ LF 0.03 0.03 0.75 0.59 0.26 0.13

sup LM LF 0.06 0.05 0.70 0.11 0.26 0.02
CvM LF 0.00 0.00 0.00 0.00 0.00 0.00

MC S 0.06 0.05 0.93 0.82 0.93 0.82
LBQ S 0.05 0.05 0.86 0.71 0.86 0.67

sup LM S 0.11 0.07 0.84 0.18 0.84 0.15
CvM S 0.00 0.00 0.01 0.01 0.00 0.00

MC NoX 0.02 0.03 0.85 0.80 0.88 0.79
LBQ NoX 0.02 0.02 0.74 0.63 0.74 0.58

sup LM NoX 0.02 0.02 0.65 0.05 0.69 0.03
CvM NoX 0.00 0.00 0.00 0.00 0.00 0.00

MC W 0.04 0.03 0.84 0.75 0.26 0.23
LBQ W 0.04 0.03 0.76 0.60 0.29 0.18

sup LM W 0.06 0.05 0.72 0.11 0.29 0.15
CvM W 0.07 0.08 0.09 0.09 0.21 0.15

Rejection Frequencies for Feasible CV based Tests. STAR(1) model, Weak Id, α = 0.05 T = 100,
βn = 0.030, J = 500.

2.5.2 Simulation Results: ARMA(1,1) Model

Similar to the results for the STAR(1) model discussed above, we find that tests based on critical

values constructed by ignoring the first order expansion tend to be overly conservative. Such tests

still have power against the alternatives studied; however, power is lower than their expansion

based counterparts. The ARMA model also experiences a similar issue with the NOX based tests

giving higher rejection frequencies under bilinear errors.

Further, the results for LF tests appear more favorable for the ARMA model than for the STAR

model. In particular, sizes appear to be similar to the ICS counterparts when the true identification

case is weak (βn = .3/
√
n) or non (βn = 0) identification. However, the LF tests appear to be

too conservative when the truth is strong identification. Under strong identification and the null

hypothesis, sizes are typically considerably smaller than nominal, and the rejection frequencies
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are low enough under the AR(2) errors that all LF based tests are in danger of failing to reject the

alternative hypothesis. For MA(10) errors, empirical power of the LF based tests are lower than

their counterparts, but only the sup LM and CvM tests give negligible power.

ICS based tests tend to perform well across most of our testing specifications. Namely, for iid

and GARCH errors, the ICS based tests are smaller than or close to nominal across all identification

scenarios, with the MC ICS test giving rejection frequencies closest to the nominal levels. The sup

LM and CvM tests are often very conservative, giving very small empirical sizes.

In particular, under the null hypothesis specifications and strong identification, the ICS based

tests appear to be equivalent to their S based counter parts. However, under weak and non iden-

tification, the ICS based tests continue to provide empirical sizes that are smaller than or close to

nominal, while their S based counterparts tend to exhibit empirical size distortions. For example,

at the nominal level α = .10 for iid errors and weak identification, the MC ICS statistic has em-

pirical size .112 while the MC S statistic gives an empirical size of .172 at lag length Ln = 5, and

the MC ICS statistic has empirical size of .106 and the MC S statistic has empirical size of .144

at lag length Ln = 10. The CvM test is an exception here, as the CvM S test does not tend to

exhibit empirical size distortions; however, the CvM test is very conservative with CvM ICS often

exhibiting rejection frequencies far below nominal. This results in lower empirical power for the

CvM test as well, with CvM ICS and CvM S exhibiting rejection frequencies of .066 and .07 under

the alternative hypothesis given by MA(10) errors and strong identification. The sup LM test has a

similar issue with being overly conservative.

Under the alternative hypothesis, the MC tests have the overall highest empirical power out of

the tests considered. The LBQ test performs decently as well. With S based tests providing higher

rejection frequencies than ICS based counterparts, leading to size distortions under the null when

identification is weak, we might expect the rejection frequencies of S based tests to be considerably

higher than ICS counterparts under alternative specifications. While S based tests do tend to have

higher rejection frequencies than ICS based tests, overall, the empirical power of ICS based tests is

comparable to their S based counterparts. For example, under the MA(10) alternative specification

with lag length Ln = 10 when identification is weak, the MC ICS test has rejection frequency .904
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and the MC S test has rejection frequency .928.

The AR(2) alternative specification appears to be fairly easy to pick up by the tests under

consideration, as they exhibit reasonably large empirical power. The MA(10) alternative provides

a better distinction among the tests.

Table 2.6: White Noise Test Simulations - ARMA under Strong Identification

H0 True H0 False
Infeasible Infeasible Feasible

iid GARCH(1,1) AR(2) MA(10) AR(2) MA(10)
MC ICS 0.05 0.03 0.56 0.76 0.51 0.72
LBQ ICS 0.04 0.04 0.52 0.54 0.47 0.48

sup LM ICS 0.02 0.05 0.50 0.06 0.46 0.05
CvM ICS 0.01 0.02 0.41 0.03 0.00 0.01

MC S 0.05 0.03 0.58 0.76
LBQ S 0.04 0.05 0.54 0.55

sup LM S 0.02 0.05 0.52 0.06
CvM S 0.02 0.03 0.41 0.03

Rejection Frequencies: Robust Tests, Identified, ARMA model, α = 0.05, T = 100, β = 0.300, J = 500.

Table 2.7: White Noise Test Simulations - ARMA model under Weak Identification

H0 True H0 False
Infeasible Infeasible Feasible

iid GARCH(1,1) AR(2) MA(10) AR(2) MA(10)
Ln = 5 Ln = 5 Ln = 5 Ln = 10 Ln = 5 Ln = 10

MC ICS 0.05 0.05 0.89 0.81 0.52 0.15
LBQ ICS 0.03 0.04 0.85 0.63 0.47 0.11

sup LM ICS 0.01 0.04 0.85 0.04 0.45 0.01
CvM ICS 0.00 0.01 0.87 0.01 0.01 0.00

MC S 0.09 0.10 0.90 0.85
LBQ S 0.08 0.07 0.88 0.73

sup LM S 0.09 0.09 0.87 0.11
CvM S 0.05 0.05 0.88 0.12

Rejection Frequencies: Robust Tests, Nearly Unidentified, ARMA model, α = 0.05, T = 100, β = 0.030,
J = 500.

2.6 Empirical Analysis

Predictability of stock returns continues to be an active area of research. Campbell, Lo,

and MacKinlay (1997) use Box-Pierce tests to analyze serial correlation in stock return indices.

Nankervis and Savin (2010, 2012) reproduce this analysis with their sup LM test, a generalized
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version of the test of Andrews and Ploberger (1996). However, Nankervis and Savin (2010) note

the limitation that their sup LM test is not appropriate for residuals, specifically from an ARMA

model. Our test, on the other hand, is designed specifically to be appropriate for residuals from

estimated models.

In a related, but different line of research, trading rules are utilized in an attempt to exploit

low levels of dependence in financial return series. Some of these rules are based on modeling the

return series. Taylor (2005) describes a trading rule based on modeling the dependence in financial

returns with an ARMA(1,1) model and informing the trading decision based on forecasts generated

from that model.

We perform an exercise similar in spirit to that performed by Campbell et al. (1997) and

Nankervis and Savin (2010) in that we are interested in testing for serial correlation in financial re-

turn series. However, we motivate our exercise by modeling the return series with an ARMA(1,1)

model and using our robust test for serial correlation as a model adequacy test on the residuals

from the model.

A more appropriate model for this context would be an ARMA-GARCH model; however, the

notion of market efficiency should lead us to believe that the model is over-parameterized in the

sense that the ARMA parameters are zero. Since GARCH residuals are MDS, we believe that

adding a GARCH component to the model unnecessarily complicates the exposition of this test.

Because of this, we simply this analysis which would other-wise require a more realistic model in

order to demonstrate the use of the test.

Our data are annual, monthly, daily value-weighted and equally-weighted CRSP NYSE/AMEX

stock return indices for the period July 1962 to December 2005, the same data as used by Nankervis

and Savin (2010). Additionally, we perform our analysis on the same sub-sample periods used by

Nankervis and Savin (2010).

We compare results from the same tests as illustrated in the simulations. The sup LM S test

is the test of Nankervis and Savin (2010), appropriately modified to be used with residuals but

ignoring the possibility of weak identification. The sup LM ICS test is the same test but constructed

to account for the possibility of weak identification using the Identification Category Selection
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procedure.

We model the return series with the ARMA(1,1) model

yt = (β + π)yt−1 + εt − πεt−1,

which is estimated via Quasi-Maximum Likelihood. Recall that π is unidentified when β = 0,

and π is weakly identified when β is statistically close to 0. Tables for the monthly data analysis

of value-weighted returns are provided here for illustrative purposes. The first table shows the

estimated coefficients for β along with the corresponding standard errors.

It appears that the β̂n are all statistically insignificantly different from zero. This situation

could ordinarily give the practitioner pause in modeling these series with the model used. One’s

first reaction may be to assume that the ARMA model is over-parameterized, yielding yt = εt.

However, as discussed in the simulation section 2.5, this does not mean that the ARMA(1,1) model

is not adequate for the purpose of modeling the return series.

Further, while we expect the notions of market efficiency and no arbitrage to manifest as a

common root in the ARMA model, as practitioners we cannot say for certain that there is no

dependence in the series. This is exactly the empirical situation in which one must worry about

potential weak identification. That is, we want to model the potentially low levels of dependence

that may exist in the series, and we must account for the non-standard inference that results from

the parameter π being statistically near identification failure.

The goal of this empirical exercise is to perform a model diagnostic activity on the resulting

estimated model in order to determine if we are willing to believe that the model has captured

any serial correlation that might have existed in the series. Hence, for these sub-sample periods,

we conduct the serial correlation tests, appropriately modified for residuals, as outlined in the

simulation section.
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Note that we are not, as is done in previous research (Campbell et al., 1997; Nankervis and

Savin, 2010), examining serial correlation in the raw return series. Here we model the raw returns

with an ARMA(1,1) model and examine the residuals from this estimated model for serial corre-

lation. Recall that the tests denoted with S are based on the procedure that ignores identification

failure, and the tests denoted ICS are based on the procedure that accommodates identification fail-

ure. Note also that the table displays the test statistics, which should be, and are, the same across

testing procedures; recall that holding a particular test fixed, the testing procedures only differ in

the critical values leading to the differences in statistical significance shown in the table.

Observe first the tests that ignore identification failure. In particular, the results from columns

1, 4, and 6 would indicate to the practitioner that there is evidence to conclude that the modeling

exercise does not adequately capture serial correlation in the raw return series. However, from

the table detailing the estimated β̂’s and their associated standard errors, the results from this

paper should lead the practitioner to believe that our modeling activity may be contaminated by

identification failure. Since this batch of tests do not accommodate identification failure, we should

be wary of their implications.

Indeed, turning to the batch of tests that accommodate identification failure, we see that, in

general, the identification failure itself may be to blame for the rejection of the null hypothesis

found with the S based tests.

2.7 Conclusion

A long line of literature documents the effect of parameter identification failure on the distribu-

tions of the estimators. Here we demonstrate that the resulting nonstandard estimator distribution

can propagate to a test statistic for serial correlation conducted on the residuals from the estimated

model. Naively using tests for serial correlation that do not accommodate identification failure

can lead to distorted inference when identification failure is present as a feature of the modeling

activity. In this case, the practitioner is in danger of concluding that the modeling activity did not

capture the serial correlation in her data, when in fact, this conclusion was induced by failing to

account for the failure in parameter identification. We provide a testing procedure that accom-

modates parametric identification failure in a white noise test on the residuals from an estimated
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model by simulating the resulting nonstandard distribution in order to conduct valid inference.

Our simulations indicate that this testing procedure is able to correct the over rejection of the

null hypothesis that occurs when ignoring identification failure in finite samples. We document

that while the procedure does involve a loss in empirical power in finite samples, the procedure

still appears to be useful for certain types of alternative. Finally, we present an empirical exercise

in which we demonstrate why we expect to encounter identification failure, the danger of ignoring

this issue, and how this testing procedure accounts for identification failure.
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CHAPTER 3

TESTING MANY ZERO RESTRICTIONS UNDER MIXED IDENTIFICATION STRENGTH

3.1 Introduction

Traditional inference is distorted when estimating a model with either a large dimensional

parameter or a parameter that may not be identifiable. These issues have both been well studied in

isolation; however, there are situations in Economics in which practitioners may wish to estimate

and conduct inference on a large dimensional parameter when some of the parameters might not

be identified. We provide a testing framework that accommodates large dimensional parameters

when some or many of the parameters may only be weakly identified. Specifically, we demonstrate

that parameter identification failure results in size distortions in a high dimensional setting, and

we develop an inference procedure that corrects the size distortion in tests for large dimensional

parameters for which a subset may be weakly identified.

Testing in a high dimensional framework is a challenge for standard tests and a topic of re-

cent interest. Many solutions have been proposed to accommodate estimation and inference in a

high dimensional setting; however, we focus our attention on a particular class of tests. This class

of tests, referred to as Max tests, conducted on the maximum estimator from a sequence of par-

simoniously constructed sub-models have been shown to have nice properties when testing high

dimensional parameters (Ghysels et al., 2016a; Hill and Dennis, 2018). These sub-models which

we describe in detail in section 3.3 form the foundation of our testing framework.

It is also known that tests on parameters that may not be identifiable require non-standard infer-

ence (Andrews and Cheng, 2012a; Cheng, 2015). In particular, many parameters in our framework

may or may not be identifiable, requiring the analysis of mixed identification strength in our set-

ting. The effect of mixed identification strength on inference has not yet been studied in a high

dimensional setting.
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Examples in the empirical literature demonstrate the need to examine the meeting point of

these two topics. Some of these examples include the use of additive non-linear models to study

non-linear mean reversion in exchange rate dynamics (Taylor, Peel, and Sarno, 2001; Kilic, 2016)

and linear instrumental variables models with many weak instruments (Andrews and Stock, 2007;

Belloni, Chernozhukov, and Hansen, 2014b), particularly when estimated with limited informa-

tion maximum likelihood (Andrews and Cheng, 2012b). We discuss examples in greater detail in

section 3.6.

We provide initial simulation results in Section 3.3 demonstrating that traditional tests tend to

over-reject the null hypothesis that the parameter vector of interest is zero when this parameter

has large dimension and some model parameters are only weakly identified. When the parameter

of interest has large dimension but parameter identification failure is not present, the Wald test

exhibits size distortions, but the Max test does not; this reiterates the result in Hill and Dennis

(2018). However, when combined with parameter identification failure, both tests tend to over-

reject the null hypothesis. This paper synthesizes ideas in Cheng (2015) and Hill and Dennis

(2018) to develop a test on a large dimensional parameter that reduces size distortions when weakly

identified parameters may be present in the model.

We consider tests of parameter zero restrictions in models for which the parametric source of

identification failure is known. For this class of models, identification failure can occur under the

null hypothesis, leading to the inclusion of nuisance parameters under the null, or weakly iden-

tified parameters unrelated to the null hypothesis may be present as a feature of the model. In

order to account for the presence of unidentified parameters, we operate under the unifying frame-

work of Andrews and Cheng (2012a) and Cheng (2015). Unlike Andrews and Cheng (2012a), our

framework accommodates models with mixed identification strength originating from many para-

metric sources of identification failure. The concept of testing under mixed identification strength

is explored by Cheng (2015) for the case of an additive nonlinear model with a small dimensional

parameter. Our procedure is applicable to a broader class of models within the framework of

M-estimation.

Further, the dimension of the subset of the parameter vector on which we conduct the test is
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allowed to increase with the sample size, thereby creating a high dimensional testing framework.

This is an avenue that has not been explored in conjunction with weakly identified models. Es-

timation and inference on parameters with a large dimension must be handled in a non-standard

way. That is, traditional methods for conducting inference on high dimensional parameters will

result in size distortions (Hill and Dennis, 2018), and if the dimension of the parameter is large

enough, traditional estimation methods may fail entirely. Estimation either proceeds with a shrink-

age estimator1 (Tibshirani, 1996) paired with a sparsity assumption with inference conducted only

on the non-zero parameters (Belloni, Chernozhukov, and Hansen, 2014a), or estimation and infer-

ence proceeds via carefully selected parsimonious models (Ghysels et al., 2016a; Hill and Dennis,

2018). We adopt the latter framework to provide a correctly sized testing procedure for high di-

mensional parameters in models with mixed identification strength.

We formally introduce the Max Test in Section 3.3. For the interested reader, Section 3.2

discusses the related literature. For inference, we adopt the notation of Cheng (2015).2 Section

3.4.1 presents the main assumptions and estimation results3 that provide the joint limit theory

for the parsimonious estimators which is then used to inform the limit theory for the Max Test in

Section 3.5. Section 3.4.2 discusses the link between the hypothesized model and the parsimonious

models that is needed in order to provide a valid test. Section 3.5 discusses the Max Test and the

inference procedure used to calculate p-values. We collect several examples that can analyzed

using this framework in Section 3.6. Section 3.7 details the Monte-Carlo simulations, and the final

section concludes.

3.2 Relationship with the Literature

Consider estimating scalar parameters (β, π) from the nonlinear function Yt = βg(Xt, π) + εt

for some smooth non-linear function g. It is well known that when β 6= 0, π can be (strongly)

1e.g. the LASSO.

2Section B.1 in the Appendix discusses in detail the notation needed to utilize her sequential procedure.

3The results in Section 3.4.1 are based upon results derived in Section B.2 in the Appendix which provide the
assumptions and estimation results that generalize Cheng’s (2015) results to a broader class of models and hence are
of independent interest.
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identified, and when β = 0, π cannot be identified. In order to develop a unifying testing frame-

work, we utilize a thought experiment which can be characterized by using the notion of drifting

sequences of true parameters. Let β = βn be a sequence of true parameters, indexed by the sample

size n, that are drifting to 0. Then the strength of identification of π is categorized by the speed

at which βn → 0. When
√
nβn → ∞, we characterize π as being semi-strongly identified, and

when
√
nβn → b ∈ (0,∞), we say π is weakly identified. In the latter case, our estimator π̂n is

not consistent for the true π0, and converges instead to a random variable under certain conditions.

Table 1 from Andrews and Cheng (2012a) details these categories. It is important to note that in

this literature, the parametric source of identification failure is known. More recently, Han and

McCloskey (2016) develop theory for the case in which the source of identification failure may be

unknown. We focus on the former case and leave this extension for future research.

For the cases of non-identification and weak identification, the estimators for π are inconsistent.

Further, in these cases the estimator for β is consistent; however, it is a function of π̂n which

converges to a random variable, resulting in a non-standard distribution for β̂n. This implies that

the resulting test statistics will exhibit non-standard behavior, yielding distorted inference from

classical tests. In this case, the asymptotic distribution of the test statistics will be nonstandard.

In particular, this is an issue for economic practitioners, as many commonly used models in

Economics include parameters that may be unidentified in certain parts of the parameter space. Ex-

amples such as Dynamic Stochastic General Equilibrium models (Guerron-Quintana et al., 2013;

Andrews and Mikusheva, 2015), Smooth Transition AutoRegressive models (Terasvirta, 1994;

Teräsvirta, 1998; van Dijk et al., 2002; Andrews and Cheng, 2013), Probit models (Andrews and

Cheng, 2012a, 2014) and Nonlinear Binary Choice Models (Andrews and Cheng, 2013), nonlinear

instrumental variables models with possibly weak instruments (Andrews and Cheng, 2012a, 2014),

ARMA models Andrews and Ploberger (1996); Andrews and Cheng (2012a); Dennis (2019),

Regime Switching Models (Chen et al., 2016) and Fuzzy Regression Discontinuity Designs (Feir

et al., 2016), models based on moment conditions and GMM (Andrews and Cheng, 2014), and

MiDAS Regressions (Ghysels et al., 2016b) have been shown to include model components that

may not be identified in certain regions of the parameter space.
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Missing from the analysis of Andrews and Cheng (2012a) is the ability to account for models

with mixed identification strength, referring to models which may simultaneously include parame-

ters from each from each of the identification categories (Cheng, 2015). Consider the simple model

Yt = β1g(Xt, π1) + β2g(Xt, π2) + εt where εt is independent of Xt and with the null hypothesis

H0 : β = 0. Under this null hypothesis, the πj are unidentified nuisance parameters, so this frame-

work is related to the literature on testing with nuisance parameters under the null (Davies, 1977,

1987; Andrews and Ploberger, 1994; Hansen, 1996; Stinchcombe and White, 1998; Ghysels and

Guay, 2004; Andrews and Mikusheva, 2016). Nuisance parameters cause the test statistics to have

non-standard distributions, which often do not have analytic expressions and must be simulated.

In this framework, however, each parameter πj may exhibit its own degree of identification

strength, so a uniformly valid test becomes necessary. Andrews and Cheng (2012a, 2013, 2014)

discuss uniformly valid inference but do not allow for mixed identification strength. Cheng (2015)

offers the first uniformly valid inference procedure for inference on sub-vectors of β allowing

for mixed identification strength but limits her theory to additive nonlinear models. The theory

presented here is applicable to M-estimation problems and hence is appropriate for a much larger

class of models.

Andrews and Cheng (2012a, 2013, 2014) and Cheng (2015) do not consider large dimensional

parameters or max tests. In contrast, we construct a test based on the maximum of a sequence of

estimated parameters from a high dimensional parameter. Inference in models with many param-

eters is typically conducted with an imposed sparsity assumption by forcing a large number of the

parameters to be equal to zero with a penalized estimator such as LASSO or Ridge (Tibshirani,

1996) in a way that precludes inference on those parameters. As a result, valid inference can only

be conducted on the remaining non-zero parameters.

Further, the LASSO sets exactly equal to zero any parameter that cannot be statistically distin-

guished from zero. Belloni, Chernozhukov, Hansen, and Kozbur (2016), Leeb and Pötscher (2008)

and Pötscher (2009) note that this can be problematic for conducting inference with approximately

sparse models that include both variables with small but nonzero coefficients and strong predic-

tors, as the LASSO will exclude the variables with small but nonzero coefficients, which can lead
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to omitted variable bias and irregular sampling behavior. Recent work focusing on this inference

issue has relied on ‘desparsification’ (van de Geer, Bühlmann, Ritov, and Dezeure, 2014; Caner

and Kock, 2018) or ‘debiasing’ (Belloni et al., 2014b; Wooldridge and Zhu, ming) the LASSO es-

timator; however, using these procedures to conduct inference when some parameters are weakly

identified has not been studied.

Our approach differs in that we estimate a collection of parsimonious models by considering

each parameter in turn and evaluating the maximum of the estimated values, thereby allowing

inference on all parameters Ghysels et al. (2016a); Hill and Dennis (2018). In this sense, our test

can be thought of as a pre-test on a high dimensional parameter vector for variable inclusion.4

Alternatively, one may prefer to frame the max test as method for testing the sparsity assumption

on a given model. In general, however, we may simply have a desire to test a large subset of our

parameters based on economic reasoning. Further, our procedure does not require sub-Gaussian

related moment conditions, typically cited for use of the LASSO; however, this results in the trade-

off that the rate of allowable parameter inclusion be limited to o(n) rather than the much less

restrictive rates typically allowed by the LASSO and related estimators.

When testing the maximum value in a sequence, we are most often interested in determining

if any of the parameter elements are different from zero. In considering only the maximum from

the sequence of values, the test statistic utilizes the most informative measure available from our

data, eliminating issues that arise from low degrees of freedom and inversion of large or near

singular covariance matrices when a large number of variables needs to be tested, for example

(Hill and Dennis, 2018; Ghysels et al., 2016a), or by combining noisy estimates which occurs

when calculating serial correlations at long lags (Hill and Motegi, 2018; Dennis, 2019).

Statistics based on a maximum of a sequence of values is an extensively studied topic in the

literature (see the textbook treatments by Leadbetter et al. (1983); Resnick (1987)) dating at least

to Fisher and Tippet (1928) and Gnedenko (1943). See also Gumbel (1958) and Berman (1964).

4As noted in Antoine and Renault (2015), pre-testing approaches are sometimes criticized, as a correct approach to
inference should account for error induced from the pre-testing stage, an argument similar to that posed by Leeb and
Pötscher (2008) regarding post-selection inference with the LASSO. The pre-testing approach is only one interpreta-
tion of the max test.
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Typically in this literature, extremal value theory arguments appeal to the Extremal Types Theorem

to determine the exact asymptotic distribution of the maximum statistic. For example, Xiao and

Wu (2014), who provide a max test for serial correlation, show that under suitable normalization,

their test statistic converges in distribution to a Gumbel distribution. See de Haan (1976), who

provides a standard approach to proving the Extremal Types Theorem.

These arguments require that when the data are divided into blocks, the dependence between

increasingly distant blocks decays at a sufficient rate. Hill and Dennis (2018) argue that when es-

timating parsimonious models, the classical extreme value theory arguments are no longer straight

forward to prove, as the estimators from the parsimonious models may exhibit some degree of

asymptotic dependence due to omitted variables. For this reason, we rely on a different method

proved in Hill and Dennis (2018) to prove the validity of our bootstrap.

Methods for bootstrapping high dimensional statistics have not been available until recently.

Chernozhukov et al. (2013, 2017) develop a theory that is able to both bypass the typical extreme

value theoretic asymptotic arguments and deliver an impressive growth rate for the sequence being

examined. However, they require independence and their theory is only appropriate for observed

random variables and relies on Gaussian approximation that is not appropriate for approximations

of non-Gaussian normalized summands.5 Zhang and Cheng (2018) extend the Gaussian approx-

imation theory in Chernozhukov et al. (2013, 2017) to allow for dependence, but only allow for

observed random variables. Zhang and Wu (2017) develop theory for a Gaussian approximation

for high dimensional times series but only allow for observed sequences as well. The theory in Hill

and Dennis (2018) is also able to bypass extreme value theoretic arguments, allows for dependence

under the null, and is appropriate for residuals. For this reason, we rely on the theory developed

in Hill and Dennis (2018); however, this theory results in the trade-off that a precise upper bound

on the sequence Ln → ∞ cannot be provided, and the allowed growth rate is simply shown to be

o(n).6

5see also Belloni et al. (2018).

6Hill and Motegi (2018) address the issue of optimal lag selection with a data driven procedure, modified from the
method of Escanciano and Lobato (2009). This procedure could be applied to the testing framework presented here;
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We discuss several relevant examples in section 3.6 including tests for omitted nonlinearity,

relevant to studying Purchasing Power Parity (Rogoff, 1996; Taylor et al., 2001), and linear instru-

mental variables estimation with many instruments (Belloni et al., 2014a,b, 2016). In an empirical

example, we conduct tests of linearity against an additive nonlinear alternative. In particular, the

class of Smooth Transition Auto-Regressive (STAR) models that we examine in the simulations has

been used to model business cycle asymmetry with regimes associated with recession and expan-

sions (Teräsvirta and Anderson, 1992; Skalin and Teräsvirta, 2001), and nonlinear mean reversion

in exchange rate dynamics (Taylor et al., 2001; Kilic, 2016). In general, smooth transition models

have been used to study many phenomena. Further, certain STAR models nest many Threshold

Autoregressive (TAR) models as a special case. See Hansen (2011) for a survey of the history

of TAR models in Economics, and for a more detailed account of the impact of STR models on

Economics and Finance, see the review by van Dijk et al. (2002). We now formally introduce the

max test.

3.3 The Max Test

First, to fix notation, let θ be the model parameter, and denote the criterion function by Qn(θ)

where n is the sample size. We are interested in testing the null hypothesis that a subvector λ of θ

is the zero vector:

H0 : λ0 = 0k vs. HA : λi,0 6= 0 for some i.

where the dimension of λ, k, is potentially large. Observe that the null hypothesis is true if and

only the largest element of λ in absolute value is zero. For this reason, we base our test on the

statistic maxi |λ̂i|.

The large dimension of λ poses a problem for both estimation and inference procedures. The

max test is constructed by estimating each parameter of interest separately in smaller dimension

models, which we call parsimonious or sub-models, as each of the smaller dimension models con-

tains only a single element from the parameter of interest. Whereas the full model may contain

however, this is beyond the scope of this paper, as we seek to illustrate the effect of weak identification on the test.
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a parameter of large dimension, each parsimonious model contains only a small dimensional pa-

rameter, resulting in the need to estimate a large number of parsimonious models and combine the

results in a creative way.

This solves the estimation problem faced with a large dimensional parameter by reducing the

dimensionality in the estimation step; however, this induces the trade-off in the form of the need

to combine estimates from a large number of models into a meaningful statistic. In this manner,

the max test is able to accommodate inference on parameters of large dimension by reducing

the estimation step to many finite dimensional models. Due to this, the max test rests upon the

foundation of these carefully constructed parsimonious models, which we describe in detail in this

section.

To distinguish the sub-models from the full model, let θ(i) ∈ Θ(i) denote the vector of pa-

rameters and Q(i),n(θ(i)) denote the criterion function for the ith parsimonious model. We will be

more explicit about the construction of these parsimonious models in a moment, but for now note

that the construction of these parsimonious models results in k different sub-models that must be

estimated, each of which contains only a single element λi from the parameter of interest, λ. We

estimate each parsimonious model with

θ̂(i) = argmin
θ(i)∈Θ(i)

Q(i),n(θ(i)).

By construction of these sub-models, each parsimonious model i contains only a single element λi

from the vector λ. We collect the relevant λ̂(i)’s from the estimation of each of the i = 1, . . . , k

parsimonious models and form the test statistic

T̂n = max
1≤i≤kn

∣∣N(i),λ,nW(i),nλ̂(i)

∣∣
whereN(i),λ,n gives the appropriate standardization as described in section 3.4.1,W(i),n is a weight-

ing term that we assume is uniformly consistent for some constant W(i), and kn → k̊ ≥ dλ where k̊

is allowed to be∞. Since each λ̂(i) may be scaled differently, theW(i),n can provide the appropriate
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scaling; we will useW(i),n as the inverse of the standard error.

Max tests are natural choices for high dimensional statistics in part because they do not require

inverting a potentially large or near singular covariance matrix, and they use the most informative

sample estimate from the sequence, ignoring the others as though they are zero. This method is

particularly adept at picking out non-zero values from a large dimensional object, even when only

a small number of the parameter values being tested are different from zero.

There are always trade-offs, and ignoring all but the most informative sample estimate can

result in information loss. In particular, we expect a test based on the maximum value to under-

perform relative to a test based on combining many values, such as a Wald or portmanteau, for

alternatives that involve a large number of small valued parameters as with a test for correlation in

a model with a weak but flat correlation structure. The practitioner should be cognizant of these

trade-offs when testing his or her models. For a discussion of this issue, we refer the reader to

Hansen (2005).

3.3.1 Parsimonious Models

The many smaller dimension parsimonious models form the foundation of the max test, and we

describe here the notation used in the construction and estimation of these parsimonious models.

We partition our parameter vector θ = (δ′, λ′, δ̃′)′ where we are interested in the parameter λ;

specifically, recall that we test the hypothesis H0 : λ0 = 0dλ where the dimension of λ, dλ, is

potentially large. The parameter δ is a vector of nuisance parameters that are present in every

parsimonious model, and δ̃ is an additional vector of nuisance parameters that are tied to λ and are

described later.

Since the null hypothesis is true if and only if λi,0 = 0 for every i, the max test operates by es-

timating the restricted parameter θ(i) = (δ′, λ′i, δ̃
′
i)
′ from the ith parsimoniously constructed model

with loss functionQ(i)(θ(i)) = Q([θ](i)) where [θ](i) = (δ′, 0, . . . , 0, λi, 0, . . . , 0, λ̃i, 0, . . . , 0)′. That

is, the ith parsimonious model is constructed by restricting all elements λj = 0 for j 6= i and

i = 1, . . . , k̊ where k̊ ≥ dλ.

The associated δ̃j elements are also set equal to zero for convenience; however, this is not

critical, as the model does not depend upon δ̃j when λj = 0. In this fashion, δ̃ are nuisance
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parameters that appear only when the relevant element from λ is not zero.7 Hence, we simply

parameterize the parsimonious models in a way that allows an extra nuisance parameter to appear

when the parsimonious model calls for it.

Observe that the parameter δ is present in every parsimonious model i for every i = 1, . . . , k̊;

however, the estimates may differ between parsimonious models. For this reason, it is important

to keep track of the estimators from each parsimonious model. We use the subscript (i) to indicate

that the parameter estimators, estimates, and (pseudo-)true values belong to parsimonious model

i.8

Since the parsimonious models are constructed by omitting variables that are not relevant when

the null hypothesis is true, there must be at least one parsimonious model that is missing a relevant

variable under the alternative. That is, the estimator from the ith parsimonious model minimizes

the parsimonious loss function, which by definition is a restricted version of the true loss function

and may omit relevant variables when the alternative hypothesis is true; hence we cannot say in

general that the ith parsimonious estimator can consistently estimate the true parameter. Instead,

we say that the ith parsimonious estimator θ̂(i) = (δ̂′(i), λ̂
′
(i),

ˆ̃δ′(i))
′ estimates θ(i),n which may not

be equal to the relevant components of the restricted parameter [θn](i) with λj = 0 and δ̃j = 0 for

every j 6= i. This is a well known issue (see e.g. White (1981)), and we establish conditions that

provide a valid test.

3.3.2 Max Test Framework

We demonstrate a simplified exposition of the max test with the model

Yt = β1g(Xt, π1) + β2g(Xt, π2) + · · ·+ βpg(Xt, πp) + εt.

where E[εt|Xt] = 0 and for some non-linear function g that is a non-degenerate random variable

g(Xt, πi) for every πi. When p is restricted to be small, this is the same model analyzed by Cheng

7That is, we could parameterize the parsimonious models so that all nuisance parameters are included in δ(i);
however, this would involve changing the size of the parameter δ(i) with every i. While this may add clarity in one
dimension, we believe that it detracts from clarity in another.

8Here we mean pseudo-true in the sense of White (1981).
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(2015).

Here, we may want to test the null hypothesis H0 : λ = 0k where λ is a sub-vector of β,

and k ≤ p is potentially large. Two issues are evident in this simple model. First, λ has a large

dimension. This is known to result in problematic estimation and inference. Second, the sub-

vector of π corresponding to λ is not identified under the null hypothesis. For example, when

λ1 = β1 = 0, π1 is not identified.

Table 3.1: Max Test Initial Simulations

Model Linear Non-linear Linear Non-linear
kλ 1 1 20 20

Wald Test 0.04 0.14 0.22 0.85
Max Test 0.05 0.11 0.05 0.12

Max t-Test 0.05 0.11 0.06 0.17

Max Test Initial Simulations - Rejection Frequencies, J = 1000, α = 0.05, n = 200, kλ ∈ {1, 20}

The table above details rejection frequencies for the standard Wald and Max tests under a few

model specifications for the nominal size α = .05. The null hypothesis is H0 : λ = 0k where k

is the dimension of the parameter being tested. The linear model, presented for reference, takes

gi(Xt, πi) ≡ Xi,t and hence does not contain weakly identified parameters, but the non-linear

model does contain parameter identification failure under the null hypothesis. We make note of

the following observations. In the first column with low kλ and no weak identification, we see that

neither the Wald nor the Max Test have size distortions. For the second column, a low kλ is paired

with weakly identified parameters to demonstrate that both standard tests have size distortions.

Cheng (2015) corrects this issue for a Wald Test on a subset of parameters from the additive non-

linear model.

The final two columns demonstrate the influence of a large dimensional parameter on the tests.

Observe that the standard Wald test over-rejects the null hypothesis when a large dimensional

parameter is present, but the Max Test has size close to nominal; this reiterates the result in Hill

and Dennis (2018). However, both tests exhibit size distortions when the model contains a large

dimensional parameter and parametric identification failure is present. We solve these two issues
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by testing the maximum λj by using a sequence of carefully constructed smaller dimension models

and using a limiting distribution that is robust to the presence of weak identification.

The max test is built upon the foundation of these carefully constructed smaller dimension

models, which we call parsimonious models and which are defined by imposing the null hypothesis

for all but one λj at a time. For the simplified additive nonlinear model given above when we wish

to test the entire vector β,9 we construct k different parsimonious models:

Yt = λ1g(Xt, π1) + ν1,t

...

Yt = λkg(Xt, πk) + νk,t

where νi,t =
∑

j 6=i λjg(Xt, πj) + εt. Observe that under the null hypothesis, νi,t = εt for every i;

hence, E[νi,t|Xt] = 0 for every i when the null is true. Each parsimonious model in this example

is estimated by non-linear least squares with the criterion Qi,n(θ(i)) = 1
n

∑n
t=1(Yt − λig(Xt, πi))

2.

The max test statistic is then constructed by collecting the λ̂j , and calculating the appropriately

standardized maximum value

T̂n = max
1≤i≤k

|Niλ̂i|

where Ni =
√
n in this example.

Whereas we give the example above to demonstrate the features and construction of the max

test, one of the strengths of our test is its ability to accommodate a broad class of models. In

its general form, the max test is appropriate for models estimated with M-estimators with cri-

terion of the form Qn = 1
n

∑n
t=1mt(θ) which includes nonlinear least squares and maximum

likelihood. The parsimonious models are then defined by restrictions on the criterion function

9That is, we let λ = β and k = p in this simplified exhibition.
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Q(i),n = 1
n

∑n
t=1m(i),t(θ(i)) where

m(i),t(θ(i)) = mt

(
(δ, 0, . . . , λi, 0, . . . , δ̃i)

)
.

Next, we briefly introduce a topic from the empirical literature and describe how this topic fits

within the max text framework. We discuss this example and others in greater detail in section 3.6.

3.3.3 Empirical Example

Studies of the effect of transaction costs on Purchasing Power Parity (PPP) suggest that ex-

change rate adjustments resemble a unit root process within a band and a stationary process outside

of that band (Taylor et al., 2001; Obstfeld and Taylor, 1997). Taylor et al. (2001) allow a smooth

transition at the boundary of the band with the Smooth Transition Auto-Regressive (STAR) model:

qt =

p∑
j=1

βjqt−j +

p∑
j=1

β∗j qt−jh(γ; qt−d) + εt

where h is the exponential transition function

h(γ; qt−d) = 1− exp(−γ(qt−d)
2)

and qt is the demeaned log real exchange rate. Similarly, Kilic (2016) examines the first differenced

model

∆qt =
[
β∗0 +

p∑
j=1

β∗j∆qt−j

]
h(γd,∆qt−d) + ut.

Two issues are illustrated with these models. First, the unknown value of d must be selected

from a potentially large number of available lags. Second, parameter identification failure occurs

when γd = 0.

The first issue seems to imply that the assumed model is simply a restriction that many γj = 0
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in a larger model that takes the form of the model above summed over many d.

∆qt =
k∑
d=1

([
βd,0 +

p∑
j=1

βd,j∆qt−j

]
h(γd,∆qt−d)

)
+ εt

where we can relax the model above by allowing βd to represent a potentially different vector of

parameters for each d. A common null hypothesis is that of no (omitted) nonlinearity:

H0 : λ = 0k

where λ is a sub-vector of γ = (γ1, . . . , γd, . . . ).

Recall the parsimonious models form the foundation of the max test. Conveniently, the parsi-

monious models are already given as they are implicitly utilized within the literature. That is, for

the model studied by Kilic (2016), the parsimonious models are simply given by

∆qt =
[
β∗d,0 +

p∑
j=1

β∗d,j∆qt−j

]
h(γd,∆qt−d) + ud,t

for each d = 1, . . . , k. Each of these models is estimated, the λ̂i’s are collected, and the max test

statistic may be calculated as T̂ = max1≤i≤k |Niλ̂i|.

We expand this example and discuss additional examples in section 3.6. Next, we begin devel-

oping the theory for the max test statistic. First, we develop the limit theory for the parsimonious

estimators, and we discuss the linkage between the parameters under the null hypothesis that is

necessary to ensure that the limit theory for the max test will follow.

3.4 Assumptions and Preliminary Results

3.4.1 Limit Theory for Parsimonious Estimators

Recall that the max test is constructed as the maximum of an estimated parameter vector where

each element from the parameter vector is estimated individually from a parsimoniously con-

structed model consisting only of that element and any nuisance parameters. This implies that

if there are k̊ elements in the parameter vector being tested, then there are k̊ different parsimonious
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models, each omitting k̊ − 1 elements from the parameter vector.

Section 3.4.2 discusses the assumption needed to ensure the test is valid and consistent. This

section details the joint limit theory for the parsimonious estimators that forms the basis for infer-

ence using the max test statistic. The limit theory for the parsimonious estimators follows from

limit theory developed for M-estimation of models with mixed identification strength in sections

B.2 and B.3 in the Appendix. Cheng (2015) develops similar theory for the special case of ad-

ditive nonlinear models, and she requires correct model specification. The theory developed here

is suitable for a broader class of models and assumes correct model specification only under the

null hypothesis, a necessary requirement for the max test which is constructed from misspecified

parsimonious models.

We first describe the data and the true parameter space. We require strongly mixing station-

ary sequences and compact parameter spaces that include the point of identification failure in the

interior.

Assumption 14. The observations {Wt = (Y ′t , X
′
t, Z

′
t)
′ : t ≤ n} are strictly stationary as are

{εt}. {Wt} is strongly mixing with mixing coefficient α(j) such that
∑∞

j=1 α(j)δ/(2+δ) < ∞ for

some δ > 0.

For each parsimonious model i, the estimator θ̂(i),n minimizes the criterion functionQ(i),n(θ) ≡

Q(i),n(θ(i);Wt) = 1
n

∑n
t=1m(i),t(θ(i);Wt) over θ(i) ∈ Θ(i) = ∆ × Λi × Λ̃i where Λi collects the

parameter spaces from Θ that are exclusive to model i and included in the null hypothesis, Λ̃i

collects the parameter spaces that are exclusive to model i but not included in the null hypothesis,

and ∆ collects the parameter spaces for the parameters that are estimated in every model.

Additionally, for the true parameter space Θ∗ and the optimization parameter space Θ, a param-

eter vector θ ∈ Θ∗ can be partitioned into three subvectors θ = (β′, ζ ′, π′)′ where the parameters β

and ζ are always strongly identified, and the identification strength of π is determined by β. ζ does

not affect the identification of π or β. For the observations {Wt = (Y ′t , X
′
t, Z

′
t)
′ : t ≤ n}, {Zt}

are the variables associated with parameter ζ which are not associated with β or π. The variables

Xt are associated with β and π but not with ζ . For any θ ∈ Θ∗, we denote by Fγ the distribution
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of {Wt : t ≤ n} and Eγ its expectation, where γ = (θ, φ) ∈ Γ and φ ∈ Φ∗ is a possibly infinite

dimensional nuisance parameter such that the distribution is fully characterized by γ.

Hence, the joint estimator parameter space Θ = B1 × · · · × Bp ×Z ×Π. We require Bj,Z,Π

to be compact for every j and the true parameter space Θ∗ to be contained in the interior of Θ. For

example, consider the additive nonlinear regression model (Cheng, 2015)

Yt = ζ ′Zt +

p∑
j=1

βjg(Xt, πj) + εt

with the null hypothesis H0 : βj = 0 ∀j. Then ∆ = Z , Λi = Bi, and Λ̃i = Πi. If the null

hypothesis is H0 : ζj = 0 ∀j. Then ∆ = B × Π, Λi = Zi, and Λ̃i = ∅.

Assumption 15. The true value θ∗ belongs to the set Θ∗ = B∗1 × · · · × B∗p × Z∗ × Π∗ where B∗j

is compact and includes 0 for each j. Π∗ and Z∗ are compact. For any θ ∈ Θ∗, the distribution

of {Wt} is given by Fγ , where γ = (θ′, φ′)′ ∈ Γ, and φ ∈ Φ∗ is an possibly infinite dimensional

nuisance parameter that fully characterizes the distribution. Φ∗ is a compact metric space with a

metric that induces weak convergence on bivariate distributions (Wt,Wt+m) for every t,m ≥ 1.

The theory developed in Andrews and Cheng (2012a) and subsequent papers utilizes a β ∈ B

and π ∈ Π such that individual elements of β do not affect the identification of individual elements

of π. Their theory requires a single drifting rate for the parameter β. Cheng (2015) extends this

theory to allow individual components of β to affect mutually exclusive components in π; however,

her framework is restricted to the class of additive non-linear models.

Assumption 16. For every Bj there is a Πj = ⊗qji=1Πi such that mt(θ;w) does not depend upon

πj ∈ Πj iff βj = 0. βi for i 6= j does not affect the identification of πj . ζ does not affect the

identification of β or π, and the identification of ζ is not affected by β or π.

This assumption requires that for every element πj of π, the identification status of πj is de-

termined by one and only one element βj from β. This allows us to define the identification

problem precisely and build a uniform estimation theory around it. Clearly the additive nonlinear

model of Cheng (2015) satisfies this assumption. Let L be the lag operator, and consider also the
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ARMA(2,2) model

(1− (β1 + π1)L)(1− (β2 + π2)L)Yt = (1− π1L)(1− π2L)εt

written in this form to show that when βi = 0 for some i = 1, 2 then a common root is present.

Specifically, one can see that whether βi = 0 or not affects only the identification status of πi and

does not affect the identification status of any πj for j 6= i.

To allow for uniformity over γ ∈ Γ, all true parameters are indexed by the sample size n.

That is, the true γn = (θ′n, φ
′
n)′ where θn = (β′n, ζ

′
n, π

′
n)′ with βn = (β′1,n, . . . , β

′
p,n)′ and πn =

(π′1,n, . . . , π
′
p,n)′. These parameters drift to the limiting values θn → θ0 = (β′0, ζ

′
0, π

′
0)′ ∈ Θ∗ and

γn → γ0 ∈ Γ.

Assumption 3 requires that the identification strength of πj , i = 1, . . . , p, be determined by

the rate at which ||βj,n|| converges to 0 as n → ∞, with πj being strongly identified only if

βj,n → βj,0 6= 0. In the case that βj,0 = 0, the speed at which βj,n → βj,0 = 0 affects the asymptotic

analysis. In particular, when ||βj,n|| → 0 fast enough, given by case (i) below, we say the parameter

πj,0 is weakly identified. In this case, the estimator π̂j,n is not consistent. Hence, following Cheng

(2015), we divide the space of drifting sequences into three identification categories of πj:

(i) Weak Identification: βj,n → 0 with n1/2βj,n → bj ∈ Rdβj

(ii) Semi-Strong Identification: βj,n → 0 with n1/2||βj,n|| → ∞

(iii) Strong Identification: βj,n → βj 6= 0.

Observe that the case βj,n = 0 ∀n is allowed under case (i); hence this case includes non-

identification. The category (ii) of semi-strong identification is necessary for uniform results in

Cheng’s (2015) work.

Following these categorical definitions, she groups subvectors of π by the identification cat-

egory above and the rate of convergence to zero for subvectors in the semi-strong identification

category. This grouping allows a convenient inductive argument to be used to prove estimation

results.
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(i) All ||βj,n|| that have non-zero limit are put in the first group. If all ||βj,n|| have zero limits,

the first group is empty.

(ii) All ||βj,n|| that are O(n−1/2) are put in the last group.

(iii) For those that converge to 0 but at a rate slower than n−1/2, members in group k converge to

0 slower than members in group k′ for any k′ > k and members in the same group converge

to 0 at the same rate.

The first group is associated with strong identification, the last group is associated with weak

identification, and the middle groups are associated with semi-strong identification, ordered by the

rate of convergence. Note that the group index k is a property associated with the drifting sequence

{βj,n : n ≥ 1}. Therefore the group index k does not change with the sample size n. See Cheng

(2015) for details.

Next, suppose there are K groups and βk1 , . . . , βkpk are the elements in group k. Let lk =

{k1, . . . , kpk} denote the indices for group k. Use the subscript lk to denote a sub-vector associated

with group k:

βlk = (β′k1
, . . . , β′kpk

)′ ∈ Rdk

and πlk = (π′k1
, . . . , π′kpk

)′ ∈ Rdπlk .

βlk,n denotes the true value of βlk when the sample size is n and βlk,0 denotes its limit. In particular,

the grouping rule implies that ||βlk′ ,n|| = o(||βlk,n||) for k′ > k between groups and ||βj′,n||

converges at the same rate as ||βj,n|| for any j, j′ ∈ lk and k = 1, . . . , K − 1. In the presence of

weak identification, βlk,n = O(n−1/2) for k = K. If all regressors are in the semi-strong or strong

identification category, then we denote lK = ∅.

Finally, we describe one more partition of the vectors β and π based on the grouping notation

above that will be used to sequentially analyze the limiting behavior of the estimators.

Consider π(i),lk , and denote π(i),k− as the elements of π in the previous groups l1, . . . , lk−1 and
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π(i),k+ as the elements of π in the subsequent groups lk+1, . . . , lK .

πk− = (π′l1 , . . . , π
′
lk−1

)′ and πk+ = (π′lk+1
, . . . , π′lK )′.

Observe that π = (π′k− , π
′
lk
, π′k+)′, and that the identification strength of these subvectors are in

decreasing order by definition. The same notation will apply to β, where we can note that the

subvectors in β = (β′k− , β
′
lk
, β′k+)′ have smaller magnitude by definition.

It is important to note that πl1 is strongly identified. All strongly identified elements of π are

included in this group in order to analyze them together with the strongly identified parameters β

and ζ . The semi-strongly identified and weakly-identified elements of π are analyzed using the

sequential procedure outlined in Cheng (2015). If no elements of π are strongly identified, l1 = ∅

and πl1 disappears.

We require that each parsimonious model estimation identify a pseudo-true value of the pa-

rameter θ in the sense of White (1981). Denote Eγ0 as expectation taken under true parameter

γ0.

Assumption 17. 1. if lK = ∅, then Eγ0(mt(θ(i);Wt)) is minimized uniquely by θ(i) = θ(i),0 ∈

Θ∗(i).

2. if lK 6= ∅, then Eγ0(mt(ψ(i),K− , π(i),K ;Wt)) is minimized uniquely by ψ(i),K− = ψ(i),K−,0 ∈

Ψ∗(i),K− for every π(i),K ∈ Π(i),K .

Note that θ(i),0 and ψ(i),K−,0 are not, in general, equal to their true model counterparts θ0 and

ψK−,0. Further, this implies that the pseudo-true drifting sequences θ(i),n and ψ(i),K−,n need not

be equal to their true model counter parts either. Together with the identification link discussed

in section 3.4.2, we are able to establish that λ∗i = 0 for every i if and only if the null hypothesis

H0 : λ0 = 0 is true, where λ∗ is a subvector of θ(i),0 or ψ(i),K−,0 and λ0 is the corresponding

subvector from θ0 or ψK−,0.

Additionally, we require some technical moment conditions to establish uniform laws of large

numbers, stochastic equicontinuity, and convergence in law of our estimators.
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Assumption 18. For each parsimonious model i, the function m(i),t(θ(i); ·) is measurable with

respect to σ(Wt), the sigma field generated by {Wt}, for every θ(i) ∈ Θ(i). Further, m(i),t(θ(i)) is

three times continuously differentiable, and for some δ > 0

1. supθ(i)∈Θ(i)
Eγ0|m(i),t(θ(i))|2+δ <∞

2. supθ(i)∈Θ(i)
lim
n→∞

Eγn|
[
B(β(i),K−)−1∇ψ(i),K−

m(i),t(θ(i))
]
j
|2+δ <∞

3. supθ(i)∈Θ(i)
lim
n→∞

Eγn|
[
B(β(i),K−)−1

(
∇2
ψ(i),K−

m(i),t(θ(i))
)
B(β(i),K−)−1

]
r,s
|2+δ <∞

4. supθ(i)∈Θ(i)
lim
n→∞

Eγn|
[

∂
∂ψ′

(i),k−
vec
(
B(β(i),K−)−1∇2

ψ(i),K−
m(i),t(θ(i))B(β(i),K−)−1

)]
r,s
|2+δ <

∞

where [A]i,j denotes the i, jth element of the matrix A.

This moment assumptions are standard when dealing with strongly mixing sequences of ran-

dom variables.10 In particular, for the nonlinear additive model and ARMA model, a 2 + δth mo-

ment on mt implies slightly more than a 4th moment on {Wt, εt}. The normalization B(βK−)−1

is needed due to the mixed rates of convergence of the estimators of the elements of π. Specifi-

cally, ∇ψK−
mt(θ) can often be written in the form B(βK−)∇ψK−

m̃t(θ), so this condition can be

expressed as a uniform moment condition on ∇ψK−
m̃t(θ). For example, in the additive nonlinear

regression model with p = 1

∇ψK−
mt(θ) = −


g(Xt, π)

Zt

β ∂
∂π
g(Xt, π)

 εt(θ) = −B(βK−)


g(Xt, π)

Zt

∂
∂π
g(Xt, π)

 εt(θ).

A similar discussion applies to the further derivatives of mt.

Within each parsimonious model, the consistency and asymptotic distributions of the estimators

follow from the theory developed in section B.2 in the appendix. The theory developed in the

appendix does not require the models to be correctly specified; instead, it only requires that each

10See e.g. Davidson (1994).
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misspecified model is uniquely minimized in population by some pseudo-true value. The following

lemmas and theorem then follow with only a change of notation.

Lemma 3.4.1 (Consistency for Strong Identification Groups). Suppose Assumptions 1-5 hold.

Then under γn → γ0,

sup
π+

(i),1
∈Π+

(i),1

||ζ̂(i)(π
+
(i),1)− ζ(i),n||

p−→ 0

sup
π+

(i),1
∈Π+

(i),1

||β̂(i)(π
+
(i),1)− β(i),n||

p−→ 0

sup
π+

(i),1
∈Π+

(i),1

||π̂(i),l1(π+
(i),1)− π(i),l1,n||

p−→ 0

We require some additional assumptions in order to establish consistency of the estimator for

the semi-strong identification groups. Consistency of this estimator is established with an inductive

argument that proceeds in the order of decreasing identification strength. Along each step, the more

strongly identified estimators are concentrated out and consistency is established uniformly over

the subsequent groups by use of a mean value expansion about the point of sequential identification

failure. This induces a bias that appears in the limit of the concentrated criterion function and must

be accounted for in the proof. The next assumption ensures that the term describing this bias exists

and is well behaved.

Assumption 19. i) For every i and every k = 1, . . . , K,

K(i),k(ψ(i),k− , π(i),lk , π(i),k+ ; γ0) =
∂

∂β′(i),k,0
Eγ0∇ψ(i),k−

mt(θ(i))

exists for every (θ(i), γ0) ∈ Θ(i),η × Γ0, where θ(i) = (ψ(i),k− , π(i),lk , π(i),k+).

ii) For every i and each k = 1, . . . , K, K(i),k(θ(i); γ) is continuous at (ψ0
(i),k− , π(i),lk , π(i),k+ ; γ0)

uniformly over π(i),lk , π(i),k+ ∈ Π(i),lk×Π(i),k+ for every γ0 ∈ Γ such that ψ0
(i),k− is a subvector

of γ0.
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This assumption describes how the mean of the score, Eγ0∇ψ(i),k−
mt(θ(i)), changes as the true

β(i),0 changes and is similar to Assumption S4 in Andrews and Cheng (2013) and Assumption

C5 in Andrews and Cheng (2012a). Cheng (2015) does not state this assumption explicitly; how-

ever, she implicitly derives and utilizes the quantity K(i),k(ψ(i),k− , π(i),lk , π(i),k+ ; γ0) in her proof of

consistency of her estimator and its limiting distribution.

Finally, we need (sequential) limiting matrix of the second derivative of the criterion function

to be non-singular, a standard assumption in the analysis of M-estimation.

Assumption 20. For each i and k, λmin(H(i),k(π(i),lk , π(i),k+ ; γ0)) ≥ ε for some ε > 0.

The next lemma provides consistency results for the estimators of the semi-strongly identified

parameters. Though the statement of the lemma is similar to that in Cheng (2015), the lemma

presented here, and in particular its counterpart in Appendix B.2, is applicable to a broader class

of models than her additive nonlinear model.

In order to facilitate the analysis, define the concentrated criterion function

Qc
n(πlk , πk+) = Qn(ψ̂k−(πlk , πk+), πlk , πk+)

where ψk− = (β′, ζ ′, π′k−)′ collects the parameters that have been concentrated out, and the true

values of these parameters are denoted with the additional subscripts ψk−,n = (β′n, ζ
′
n, π

′
k−,n)′ and

ψk−,0 = (β′0, ζ
′
0, π

′
k−,0)′ where the latter gives the limit of the drifting sequence: ψk−,n → ψk−,0.

Further, we use the superscript 0 notation to define

ψ0
k−,n = (β′k−,n, β

0′
lk
, β0′

k+ , ζ ′n, π
′
k−,n)′

to be the parameter vector consisting of the concentrated out parameters evaluated at the point of

sequential identification failure β0
lk

= 0 and β0
k+ = 0. See Appendix B.1 for details.

Lemma 3.4.2 (Consistency for Semi-Strong Identification Groups). Suppose Assumptions 1-7

hold. Then under γn → γ0, for k = 2, . . . , K − 1,
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(a) the concentrated sample criterion function satisfies

||β(i),lk,n||
−2
(
Qc

(i),n(π(i),lk , π(i),k+)−Q(i),n(ψ0
(i),k−,n)

)
p−→ −1

2
(ω′(i),k,0, 0

′
d(i),k+

)K(i),k(π(i),lk , π(i),k+ ; γ0)′[H(i),k(π(i),lk , π(i),k+ ; γ0)]−1

×K(i),k(π(i),lk , π(i),k+ ; γ0)(ω′(i),k,0, 0
′
d(i),k+

)′, (3.1)

where ω(i),k,0 = limn→∞ β(i),lk,n/||β(i),lk,n|| is the angle parameter

(b) the estimator of π(i),lk,n satisfies

sup
π(i),k+∈Π(i),k+

||π̂(i),lk(π(i),k+)− π(i),lk,n||
p−→ 0

(c) the estimator of ψ(i),k− = (β′(i), ζ
′
(i), π

′
(i),l1

, . . . , π′(i),lk−1
)′ satisfies

||β(i),lk,n||
−1



β̂(i),k−(π(i),k+)− β(i),k−,n

β̂(i),lk(π(i),k+)− β(i),lk,n

β̂(i),k+(π(i),k+)

ζ̂(i) − ζ(i),n

B∗(β(i),k−,n)(π̂(i),k−(π(i),k+)− π(i),k−,n)


p−→ 0,

uniformly over π(i),k+ ∈ Π(i),k+ where

B∗(β(i),k−,n) = diag{(1dπ(i),l1
||β(i),l1||, . . . , 1dπ(i),lk−1

||β(i),lk−1
||)′}.

The method of proof is similar to that in Cheng (2015); in particular, it exploits an inductive

argument along the parameter grouping in order of decreasing identification strength in order to

prove consistency in a sequential manner. Part (a) relies on sequentially concentrating out the

estimator group associated with the current inductive step, a procedure that Cheng (2015) refers

to as sequential peeling of the criterion function. At each sequential step, the concentrated crite-

rion function is analyzed with a second order mean value expansion about the point of sequential

identification failure.
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Here, we use the term sequential identification failure to indicate the point in the parameter

space at which all groups of parameters with weaker identification strength than the current group

are unidentified. That is, ψ0
k−,n = (β′k−,n, β

0′
lk,n
, β0′

k+ , ζ ′n, π
′
k−,n)′ where β0

lk,n
and β0

k+ are both 0,

so Q(i),n(ψ0
(i),k−,n) does not depend upon πlk,n or πk+,n. This is similar to an argument used in

the proof of the estimator limiting distribution for the non-mixed identification strength case in

Andrews and Cheng (2012a,b), and this argument is additionally used in establishing the limiting

distribution of the estimators here.

Use of this procedure in a sequential manner allows us to establish uniform consistency of each

of the estimators of the semi-strongly identified parameters as detailed by part (b) of the lemma,

and it also provides us with an improved rate of convergence at each step as given in part (c). These

rates of convergence will be used to establish the limiting distribution of the estimators.

The asymptotic distribution of the estimators is characterized based on two possibilities: either

(a) lK is not empty in which case there are weakly identified parameters, or (b) lK is empty in which

case there are no weakly identified parameters, and all parameters are consistently estimable. In

the former case, the asymptotic distribution is shown to be normal, but when we have weakly

identified parameters, the limiting distribution of the estimators is non-standard.

Recall that when lK is not empty, the last group, K, is weakly identified, so
√
nβlK →

blK . For each i, let G(i)(π(i),lK ; γ0) be a zero mean Gaussian process with covariance kernel

Ω(i)(π(i),lK , π̃(i),lK ; γ0), and define the processes

τ(i)(π(i),lK ; γ0) =
[
H(i),K(π(i),lK ; γ0)

]−1(
K(i),K(π(i),lK ; γ0)b(i),lK + G(i)(π(i),lK ; γ0)

)
(3.2)

χ(i)(π(i),lK ; γ0) = −1

2
τ(i)(π(i),lK ; γ0)′

[
H(i),K(π(i),lK ; γ0)

]
τ(i)(π(i),lK ; γ0). (3.3)

The process χ(i)(π(i),lK ) appears as the limiting distribution of the normalized concentrated

criterion function. Following a similar argument to that used in Lemma 3.4.2, the normalized and

centered concentrated criterion function is minimized by π̂lK , so if χ(i)(π(i),lK ) is continuous and

uniquely minimized by some π∗lK , then this will provide the limiting distribution for π̂lK by the

argmax continuity theorem in van der Vaart and Wellner (1996). We state this assumption next.
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In case (b) for which lK is empty, the second derivative of the criterion function

∇2
ψ(i),K−

mt(θ(i)) = ∇2
θ(i)
mt(θ(i)), and its normalized limit becomes

H(i),K−1(π(i),lK−1
, π(i),K ; γ0) = H(i),K−1(γ0).

Further, we show that the normalized first derivative

1√
n

n∑
t=1

B(β(i),K−,n)−1∇ψ(i),k−
mt(θ(i)) =

1√
n

n∑
t=1

B(β(i),n)−1∇θ(i)mt(θ(i))
d−→ G(i),θ(γ0).

where G(i),θ(γ0) ∼ N(0,Ω(i),θ(γ0)).

In order to establish the joint limiting distribution, we require that the joint process

{χ(i)(π(i),lK ; γ0) : 1 ≤ i ≤ k̊w} be uniquely minimized by some vector [π∗(i),lK ]i=1,...,̊kw
, where

k̊w is the number of parsimonious models with weakly identified parameters.

Assumption 21. Each sample path of the joint process {χ(i)(π(i),lK ; γ0) : 1 ≤ i ≤ k̊w} is a.s.

continuous and uniquely minimized by the vector [π∗(i),lK ]i=1,...,̊kw
with probability 1.

Theorem 3.4.3. Let γn → γ0 and suppose Assumptions 1-8 hold. Then

{
n1/2B(i)(β(i),n)

(ψ̂(i),K− − ψ(i),K−,n)

π̂(i),lK − π(i),lK ,0

 : 1 ≤ i ≤ k̊

}
d−→

{
Z(i) : 1 ≤ i ≤ k̊

}
,

where Z(i) are defined point-wise in i based on the cases:

a) If lK 6= ∅, where lK indexes the weakly identified subvector of π(i), then

Z(i) =

 τ(i)(π
∗
(i),lK

(b, γ0))− SlKb(i),lK

||τ(i),βK (π∗(i),lK (b, γ0))||
(
π∗(i),lK (b, γ0)− Sπ(i),lK

πlK ,n

)


where SlK is the selection matrix that selects the columns corresponding to β(i),lk , and Sπ(i),lK

selects the elements of the vector πlK ,n corresponding to π(i),lK ,n.
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b) if lk = ∅, then no parameters are weakly identified, and

Z(i) = H(i),K−1(γ0)−1G(i),θ(γ0)

where G(i),θ(γ0) ∼ N(0,Ω(i),θ(γ0)).

Note that we suppress the dependence of lK upon i for convenience in notation, and recall that

if lK is empty, then no parameters are weakly identified, so all parameters and estimators indexed

by lK disappear and ψ(i),K− = θ(i). If l(i),K is empty for every i, then the limiting distribution{
Z(i) : 1 ≤ i ≤ k̊

}
is a Gaussian process with covariance kernel Eγ0 [Z(i)Z

′
(j)]. However, the

presence of weakly identified parameters complicates this limiting distribution.

Note also that when lK 6= ∅, we suppress the dependence of Z(i) = Z(i)(π
∗
(i),lK

(b, γ0)) upon

π∗(i),lK (b, γ0) in the statement of Theorem 3.4.3, as doing so simplifies the presentation of the the-

orem. The reader should note, however, that in the presence of weak identification, the limiting

distribution of the ith parsimonious estimator involves a Gaussian process evaluated at the ran-

dom variable π∗(i),lK (b, γ0), which is itself a function of nuisance parameters. This differs from

the case when there are no weakly identified parameters and the limiting distribution of the ith

parsimonious estimator is a Gaussian random variable.

The point-wise in i asymptotic distribution of the parsimonious estimators are described in

Theorem B.4.1 in the appendix. However, the max test combines estimators across parsimonious

models, so it is necessary that we analyze the joint limiting distribution of the parsimonious estima-

tors. Theorem 3.4.3 provides this joint asymptotic distribution. Observe that when there are both

parsimonious models with weakly identified parameters and without weakly identified parameters,

the joint limiting distribution consists of a combination of normal random variables and Gaussian

functionals of the random variables π∗(i),lK . We know then from Cramér’s Theorem that the joint

limiting distribution is non-standard.

Corollary 3.4.4 (Asymptotic Distribution of Parsimonious Estimators). Suppose Assumptions 1-7
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and 9 hold. Then, under γn → γ0,

{
N(i),λ,nλ̂(i) : 1 ≤ i ≤ k̊

}
d−→

{
S ′(i),λZ(i) : 1 ≤ i ≤ k̊

}
,

where N(i),λ,n = S ′(i),λ(diag(n1/2B(i)(β(i),K−,n))′, 1′dπ(i),lK

)′ and S(i),λ is the selection matrix that

selects the element corresponding to λ(i).

For example, consider the additive nonlinear model

Yt = ζ ′Zt +

p∑
j=1

βjgj(Xj,t, πj) + εt

with the null hypothesis H0 : βj = 0 ∀j. The parsimonious models are

Yt = ζ ′Zt + βigj(Xj,t, πi) + ν(i),t

for i = 1, . . . , k̊ for some k̊ ≥ p. θ(i) = (ζ ′, βi, π
′
i)
′, λ(i) = βi, and S(i),λ = (0′dζ , 1, 0

′
dπ(i)

)′.

3.4.2 Linking the Unrestricted and Parsimonious Models

Since each parsimonious estimator minimizes a misspecified loss function, we cannot in gen-

eral show that any parsimonious estimator consistently estimates the relevant components of the

true parameter. Each parsimonious estimator is still a best predictor in some sense, and we can

say that the estimator is consistent for a pseudo-true value that minimizes the population version

of the misspecified parsimonious loss function. See White (1981) for a discussion of this issue. In

particular, the pseudo-true value θ(i),n is not in general equal to the relevant components of the true

parameter [θn](i). Here, we show that our conditions are sufficient to equate these two values under

the null hypothesis. We require one additional assumption that has not yet been stated.

Assumption 22. 1. if lK = ∅, then Eγ0(mt(θ;Wt)) is minimized uniquely by θ = θ0 ∈ Θ∗.

2. if lK 6= ∅, then Eγ0(mt(ψK− , πK ;Wt)) is minimized uniquely by ψK− = ψK−,0 ∈ Ψ∗K− for

every πK ∈ ΠK .
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This assumption is similar to Assumption 4; however, where Assumption 4 states that the par-

simonious population criterion function is minimized uniquely by the pseudo-true parameter θ(i),0,

this assumption states that the unrestricted population criterion function is minimized uniquely by

the true parameter θ0.

Recall that we partition θ = (δ′, λ′, λ̃′)′ and θ(i) = (δ′(i), λ
′
(i), λ̃

′
(i))
′.

Theorem 3.4.5. Let Assumptions 4, 5, and 9 hold, and let λ be a subvector of ψK− . Then λ0 = 0dλ

if and only if λ(i),0 = 0 for every i, 1 ≤ i ≤ dλ.

Together, Assumptions 4, 5, and 9 are sufficient for a similar assumption to Assumption 1

in Hill and Dennis (2018) which establishes Theorem 3.4.5 as Theorem 2.1 in Hill and Dennis

(2018). In particular, by construction of our criterion function Q(i),n(θ) ≡ Q(i),n(θ(i);Wt) =

1
n

∑n
t=1m(i),t(θ(i);Wt) and m(i),t(θ(i);Wt) = mt([θ](i);Wt) where [θ](i) is the restricted full pa-

rameter with λj = 0 for every j 6= i. It follows that

∇ψ(i),K−
m(i),t(θ(i)) = ∇ψ(i),K−

mt([θ](i))

for every i, providing the necessary link between the unrestricted and parsimonious models specif-

ically at the point where the null hypothesis holds. The result in Theorem 3.4.5 then follows from

the assumptions that both the population unrestricted and population parsimonious models are

uniquely minimized by their respective true and pseudo-true values.

Note the importance of the imposition of the particular null hypothesis that λ = 0. It is this

particular hypothesis that results in the parsimonious models used in estimation. An extension of

this framework to allow a different null H̃0 : λ = λ0 for some λ0 6= 0 can be considered when the

criterion function is based on a regression model. Consider the linear example yt = δ′Zt+λ
′Xt+εt.

Testing H̃0 will require construction and estimation of the sequential null imposed parsimonious

models yt − λ′−i,0X−i,t ≡ yi,t = δ′Zt + λ′iXi,t + νi,t.

This theorem provides the convenient implication that under the null hypothesisH0 : λ0 = 0dλ ,

δ(i),0 = δ0 for every i = 1, . . . , dλ. Effectively, under the null hypothesis and when considering

only the limiting values, there are no omitted variables, so there is no omitted variable bias. Since
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we consider uniform inference over the parameter space, we allow for sequences λn → 0 under

the null hypothesis, so that omitted variable bias may still exist under the null hypothesis in finite

samples. This theorem provides the result that under the null hypothesis there is no asymptotic

omitted variable bias. Further, consistency of our test follows since under any alternative HA :

λ0 6= 0dλ , there is an i with 1 ≤ i ≤ dλ such that λ(i),0 6= 0 when λ is a subvector of ψK− .

This implication helps us establish consistency of our test when the null hypothesis only in-

volves parameters that are not weakly identified. The reader should note that when the null hypoth-

esis involves weakly identified parameters, consistency cannot be guaranteed in general. Lemma

B.6.1 illustrates this point. In order to describe the distribution of the estimators, we employ a

more convenient normalization different from that used in Lemma B.6.1; however, the principle

remains the same. In particular, this normalization, described in Theorem B.4.2, implies that when

there are weakly identified parameters (lK 6= ∅)

n1/2B(β(i),n)

(ψ̂(i),K− − ψ(i),K−,n

)
π̂(i),lK

 d−→

τ(i)(π
∗
(i),lK

)− SlKb(i),lK

||τ(i),βK (π∗(i),lK )||π∗(i),lK

 .

Ignoring the parsimonious model subscript i for a moment, we can see that the issue here arises

because n1/2||βK,n|| converges to a finite constant rather than diverging to infinity. Since β̂K,n
p−→ 0

at rate n1/2, n1/2||β̂K,n||
d−→ ||τβK (π∗lK )||, a random variable.

However, since the inability to identify any πj is driven by a particular βj,0 = 0 (by Assumption

3), the result of Theorem 3.4.5 implies that a subvector of π(i) is weakly identified if and only if its

true model counterpart is weakly identified. Hence the distribution of the parsimonious estimator

may be used for inference.

Here we must also point out another limitation of the test; namely, our max test does not accom-

modate complex hypothesis tests. This is an interesting issue in testing with mixed identification

strength, since a test involving a complex hypothesis such as π1 + π2 = 0 will be dominated by

the parameter with the weakest identification strength. Cheng (2015) addresses this issue in her

Wald test with a rotation matrix that effectively alters a complex Wald test involving parameters
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with more than one identification strength to a test involving only the parameters with the weakest

identification strength.

3.5 Max Test Limit Theory and Inference

Recall that we partition our parameter vector θ = (δ′, λ′, λ̃′)′ where δ is a vector of nuisance

parameters, λ̃ is an additional vector of nuisance parameters that are tied to λ and are described

later, and we are interested in testing the hypothesis H0 : λ0 = 0dλ where the dimension of λ, dλ,

is potentially large.

We test the equivalent null hypothesis that λi,0 = 0 for every i by estimating the restricted

parameter θ(i) = (δ′, λ′i, λ̃
′
i)
′ from the ith parsimoniously constructed model with loss function

Q(i),n(θ(i)) = Qn([θ](i)) where [θ](i) = (δ′, 0, . . . , 0, λi, 0, . . . , 0, λ̃i, 0, . . . , 0)′. That is, the ith

parsimonious model is constructed by restricting all elements λj = 0 for j 6= i and i = 1, . . . , k̊

where k̊ ≥ dλ. The associated λ̃j elements do not appear when λj = 0, so we set them equal to

zero without loss of generality. That is, for each i

θ̂(i) = argmin
θ(i)∈Θ(i)

Q(i),n(θ(i)).

We test the null hypothesis that a subvector λ of θ is the zero vector:

H0 : λ0 = 0dλ vs. HA : λi,0 6= 0 for some i.

To test this hypothesis, we collect the relevant λ̂(i)’s and form the test statistic

T̂n = max
1≤i≤k̊n

∣∣N(i),λ,nW(i),nλ̂(i)

∣∣
where N(i),λ,n gives the appropriate standardization as described in section 3.4.1, W(i),n is an

additional weighting term that we assume is uniformly consistent for some constant W(i), and

k̊n → k̊ ≥ dλ where k̊ is allowed to be∞. Since each λ̂(i) may be scaled differently, the W(i),n

can provide the appropriate scaling; we will useW(i),n as the inverse of the standard error.

Theorem 3.4.3 paired with the CMT and a result from Hill and Dennis (2018) allow us to
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establish the following result.

Theorem 3.5.1. Let Assumptions 1-9 hold, and let Z(i) be as in Theorem 3.4.3. Then under H0,

∣∣∣T̂n − max
1≤i≤k̊n

|S ′(i),λW(i)Z(i)|
∣∣∣ p−→ 0

for some non-unique k̊n = o(n).

Recall that, as discussed in section 3.4.2, any dependence across the parsimonious estimators

λ̂(i) due to omitted variables is asymptotically negligible under H0. One strategy to derive the

asymptotic null distribution of the maximum test statistic would be to appeal to extreme value

theoretic results. This would allow us to pin down the exact limiting distribution by use of the

extremal types theorem (Gnedenko, 1943; de Haan, 1976; Leadbetter et al., 1983). Standard argu-

ments used for inference on maximum statistics rely on this method.11 However, the asymptotic

analysis of extremes of non-identically distributed Gaussian processes poses interesting statistical

challenges that are not addressed here.

Instead, we provide an inference method based on the bootstrap. Our procedure does not

require that we know the asymptotic distribution of the test statistic; valid inference only requires

that our bootstrap estimator and test statistic converge to the same distribution.

Recent work for high dimensional statistics has focused on by-passing extreme value theory

but has been limited by not allowing for dependence or residuals or by only allowing for Gaussian

approximation (Chernozhukov et al., 2013, 2017; Zhang and Cheng, 2018; Zhang and Wu, 2017).

Theory in Hill and Motegi (2018); Hill and Dennis (2018) allows for dependence under the null,

residuals, and does not require Gaussianity. Here, we side-step the extreme value theory asymp-

totics by using the approach found in Hill and Dennis (2018) paired with the wild bootstrap Wu

(1986); Liu (1988); Shao (2010, 2011a).

In practice, we do not know which parameters, if any, are weakly identified. Computation of

11see e.g. Xiao and Wu (2014) for a recent treatment involving the maximum of a sequence of covariances or
Chernozhukov (2005) and Chernozhukov, Fernández-val, and Kaji (2017) for extreme value theory applied to quantile
regression.
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robust critical values will involve a null imposed information criteria selection (ICS) procedure.

This involves computation of critical values under both the situation where we have a consistent

estimator for π(i) and the situation for which we do not. Below, we first describe the algorithm

used to perform the bootstrap assuming that the correct identification categories are known. Then

we discuss data dependent critical value computation and the identification category selection pro-

cedures.

3.5.1 Inference

We provide two procedures for conducting inference. Both methods are based on the wild

bootstrap (Wu, 1986; Liu, 1988). The wild bootstrap is a multiplier bootstrap. Wu (1986) and Liu

(1988) detail the classic wild bootstrap for iid and non-iid sequences. Hansen (1996) allows for

adapted martingale difference sequences, and Shao (2010, 2011a) allows for dependent sequences.

Shao (2010) uses iid random draws as weights with a kernel function, but does not allow for a

truncated kernel. Shao (2011a) uses a truncated kernel function. The wild bootstrap in convenient

to use in many circumstances as it has been shown to allow for heteroskedasticity of unknown

forms (Davidson and MacKinnon, 2010).

The first procedure is designed to work for any model satisfying the assumptions of Theorem

3.5.1. It involves calculation of the sample analogues of the key quantities used to construct the

null imposed limiting distributions detailed in Theorem 3.4.3. These quantities are functions of the

true parameter γ0; hence they contain nuisance parameters since πlK ,0 is not consistently estimable.

The second procedure is easier to implement but only able to accommodate a restricted class of

models, and we believe it to be valid only for strongly identified parameters. We provide only

simulation evidence for the second procedure rather than proving its validity.

We prove the validity of the procedures presented here, but we do not expect the bootstrap

to provide any second order improvements. In this sense, the bootstrap is meant to provide a

convenient method for inference. See e.g. Moreira, Porter, and Suarez (2009) for a discussion

of this issue. For both bootstrap procedures, we impose the null hypothesis following the advice

of Davidson and MacKinnon (1999, 2010), who argue that doing so will provide higher power.

Additionally, this has the benefit of reducing the dimension of the nuisance parameter space in
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many cases.

3.5.2 Conditional Simulation Based Inference

This method is a variant of a wild bootstrap that falls in-between a traditional wild bootstrap and

inference based on simulation. We call it conditional simulation based inference, as we simulate

the limiting distribution of the test statistic conditional on the data. Recall the quantities defined in

equations 3.2 and 3.3 and Theorems B.4.1 and 3.4.3.

τ(i)(π(i),lK ; γ0) =
[
H(i),K(π(i),lK ; γ0)

]−1(
K(i),K(π(i),lK ; γ0)b(i),lK + G(i)(π(i),lK ; γ0)

)
χ(i)(π(i),lK ; γ0) = −1

2
τ(i)(π(i),lK ; γ0)′

[
H(i),K(π(i),lK ; γ0)

]
τ(i)(π(i),lK ; γ0)

The sample analogue of G(i)(π(i),lK ; γ0) is Ĝ(i)(π(i),lK ). Draw zt ∼ N(0, 1) and form the bootstrap

sample analogue

Ĝbs(i)(π(i),lK ) =
1√
n

n∑
t=1

zt

{
m(i),t(ψ̂

0
(i),K−,n(π(i),lK ), π(i),lK )

− 1

n

n∑
t=1

m(i),t(ψ̂
0
(i),K−,n(π(i),lK ), π(i),lK )

}
.

Use this to form the quantities

τ̂ bs(i)(π(i),lK ; γ0, b) =
[
Ĥ(i),K(π(i),lK )

]−1(
K̂(i),K(π(i),lK ; γ0)b(i),lK + Ĝbs(i)(π(i),lK )

)
χ̂bs(i)(π(i),lK ; γ0, b) = −1

2
τ̂ bs(i)(π(i),lK ; γ0, b)

′
[
Ĥ(i),K(π(i),lK )

]
τ̂ bs(i)(π(i),lK ; γ0, b)

Next, compute

π∗,bs(i),lK
(γ0, b) = argmin

π(i),lK
∈Π(i),lK

χ̂bs(i)(π(i),lK ; γ0, b).

Denote by⇒p weak convergence in probability on the space of uniformly bounded functions,

l∞, as defined in Giné and Zinn (1990).
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Lemma 3.5.2. Let the assumptions of Theorem 3.5.1 hold.

{τ̂ bs(i)(π
∗,bs
(i),lK

(γ0, b); γ0, b)

π∗,bs(i),lK
(γ0, b)

 : 1 ≤ i ≤ k̊

}
⇒p

{
Z̊(i)(γ0, b) : 1 ≤ i ≤ k̊

}
,

where Z̊(i)(γ0, b) is an independent copy of the process described in Theorems B.4.1 and 3.4.3.

Let S(i),λ be the selection matrix that selects the element corresponding to λ(i) as described in

Corollary 3.4.4, and define

λ̊(i)(γ0, b) = S ′(i),λ

τ̂ bs(i)(π
∗,bs
(i),lK

(γ0, b); γ0, b)

π∗,bs(i),lK
(γ0, b)

 .

The following corollary is a direct result of the previous lemma.

Corollary 3.5.3. Let the assumptions of Theorem 3.5.1 hold.

{
λ̊(i)(γ0, b) : 1 ≤ i ≤ k̊

}
⇒p

{
S ′(i),λZ̊(i)(γ0, b) : 1 ≤ i ≤ k̊

}

It is easy to see from the above corollary that the procedure described above will simulate the

distribution of the max statistic for fixed k̊. The next theorem utilizes a result in Hill and Dennis

(2018) to extend this result to allow for increasing sequences kn = o(n).

Theorem 3.5.4. Let the assumptions of Theorem 3.5.1 hold. For some non-unique sequence of

positive integers {kn}, kn →∞ and kn = o(n),

sup
c>0

∣∣∣P ( max
1≤h≤kn

|̊λ(i)(γ0, b)| ≤ c|Wn)− P ( max
1≤h≤kn

|S ′(i),λZ̊(i)(γ0, b)| ≤ c)
∣∣∣ p−→ 0

3.5.3 Residual Multiplier Bootstrap

We present this procedure for models of the form

Yt = f(Xt, Zt, θ) + σ(Xt, Zt, θ)εt.
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We first estimate the null imposed model Qn(θ(0)) = 1
n

∑n
t=1mt(θ

(0)) with θ(0) = [δ(0)′, 0′dλ ]′ to

generate the estimates of the nuisance parameters δ̂(0). If elements of πlK are included in δ, then

the estimates of these elements will not be consistent. Since π̂lK is not a consistent estimator

of πlK ,0, we must consider all vectors δ̂(0)(πlK ) ∈ {(δ̂K−(πlK )′, π′lK )′ : πlK ∈ ΠlK}. Define

θ̂(0)(πlK ) = (δ̂K−(πlK )′, π′lK , 0
′
dλ

)′. Use this estimator to construct the null imposed residuals

ε̃t(πlK ) = εt(θ̂
(0)(πlK )). Imposing the null hypothesis allows the test to have power, and it has the

potential to greatly reduce the dimension of the nuisance parameter space.

Draw a multiplier sequence {zt}nt=1 ∼ iid N(0, 1) and generate Ỹ m
t (πlK ) =

f(Xt, Zt, θ̂
(0)(πlK )) +σ(Xt, Zt, θ̂

(0)(πlK ))ε̃t(πlK )zt, and let W̃m
t (πlK ) = (Ỹ m

t (πlK ), Xt, Zt). Con-

struct and estimate the k̊n models via the parsimonious loss functions

ˆ̃θm(i)(πlK ) = argmin
θ(i)∈Θ(i)

1

n

n∑
t=1

m(i),t(θ(i); W̃m
t (πlK )).

Collect the ˆ̃λm(i)(πlK ) and form the bootstrapped statistic

ˆ̃T mn (πlK ) = max1≤i≤k̊n

∣∣N(i),λ,nW(i),n
ˆ̃λm(i)(πlK )

∣∣. Repeat this procedureM times to generate the

sequence { ˆ̃T mn (πlK )}Mm=1.

The πlK dependent α-level critical value is then ˆ̃T [(1−α)m]
n (πlK ), and the associated p-value is

ˆ̃pn,M(πlK ) = 1
M
∑M

m=1 I( ˆ̃T mn (πlK ) > T̂n). As this is a function of πlK , we consider two types of

critical values - one for benchmarking and the other for use in practice. The infeasible α-level crit-

ical value is ˆ̃T [(1−α)m]
n (πlK ,0), and the feasible α-level critical value is supπlK∈ΠlK

ˆ̃T [(1−α)m]
n (πlK ).

3.5.4 Robust Inference

In practice, we do not know if lK is empty or not. We utilize a data dependent identification

category selection procedure as described in Andrews and Cheng (2012a) and Cheng (2015) to se-

lect the elements from π that we believe to be not weakly identified. This Identification Category

Selection procedure cannot fully determine the group specification, but does provide less conser-

vative critical values than a procedure that does not rely on identification category selection (see
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Cheng (2015) for details). Define the ICS statistic

ICS(i),j,n =
(
nβ̂′(i),j(Σ̂(i),j)

−1β̂(i),j/d(i),βj

)1/2

where Σ̂(i),j is the submatrix of Σ̂(i) that corresponds to βj . Note that Σ̂(i) = Ĥ−1
(i),K−1Ω̂(i),θĤ

−1
(i),K−1

is constructed assuming that lK is empty.

Let {κ(i),j,n : n ≥ 1} be a sequence of constants such that κ(i),j,n → ∞ and κ(i),j,n/n
1/2 → 0

for every i and j. The weak identification group is selected as the set

l̂(i),K = {j : ICS(i),j,n ≤ κ(i),j,n}.

The idea behind the identification category selection procedure is that the ICS statistic will

diverge to∞ whenever β(i),j is ‘large enough.’ Hence, this procedure forms a pre-test in which we

reject the hypothesis of π(i),j being weakly identified whenever the ICS statistic is large. If the ICS

statistic is small so that we fail to reject the weak identification hypothesis on π(i),j , then we place

j ∈ l̂(i),K . If the our null hypothesis involves βj = 0, then we put j ∈ l̂(i),K without selection.

3.6 Additional Examples

Here we discuss several examples that may be studied by utilizing this framework. The first

example describes how this test can be used as a test for additional omitted non-linearity by using

the additive non-linear model studied in Cheng (2015). This is related to the empirical study of

non-linear mean reversion in exchange rate dynamics that has been used as a possible explanation

for the Purchasing Power Parity Paradox. The second example describes the relationship between

weakly identified ARMA(p,q) models, the common roots problem, and weak instruments in time

series models. The third example discusses a nonlinear binary choice model. The fourth exam-

ple discusses limited information maximum likelihood estimation (LIML) of linear instrumental

variables models with many weak instruments.
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3.6.1 Testing for Nonlinearity in Exchange Rate Dynamics

Purchasing Power Parity (PPP) embodies the idea that, when expressed in the same currency

units, price levels should be equal across nations (Cassel, 1918). Variations in the real exchange

rate can be thought of as deviations from PPP. A long literature has attempted to reconcile the high

short-term volatility in real exchange rates with the slow rate at which convergence to PPP seems

to occur. This has become known as the PPP puzzle (Rogoff, 1996).

The (log) real exchange rate can be expressed as qt = st − pt + pt∗, where st is the (log)

nominal exchange rate, pt is the logarithm of the domestic price level, and pt∗ is the logarithm of

the foreign price level. This formulation allows one to interpret the real exchange rate as a measure

of deviation from Purchasing Power Parity. Taylor et al. (2001) and others note that studies of the

effect of transaction costs on PPP suggest that exchange rate adjustments resemble a non-linear

process in which the rate appears to be a unit root process within a band and a stationary process

outside of that band. They model real exchange rate dynamics with a model that allows a smooth

transition at the boundary of the band. In particular, they examine the STAR model (Granger and

Teräsvirta, 1993)

qt − µ =

p∑
j=1

βj(qt−j − µ) +
[ p∑
j=1

β∗j (qt−j − µ)
]
Φ(γ; qt−d − µ) + εt

where {qt} is assumed stationary and ergodic with εt ∼ iid(0, σ2) and the exponential transition

function

Φ(γ; qt−d − µ) = 1− exp(−γ2(qt−d − µ)2).

Alongside the exponential transition function, the model is referred to as the ESTAR model. Sim-

ilar models, including the Logistic (LSTAR) model with transition function

Φ(γ; qt−d − µ) =
[
1− exp(−γ(qt−d − µ))

]−1
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have been used as specification tests for the estimated models. van Dijk et al. (2002) provide an

extensive review of smooth transition models.

Two potential issues appear in this modeling exercise. First the unknown value of d must be

selected. Second, given the non-linearity of the chosen model, parameter identification failure

may result under some situations, and in particular parameter identification failure occurs under

the null hypothesis when testing no omitted non-linearity. For the first point, Taylor et al. (2001)

provide economic intuition in favor of smaller values of the parameter d, namely that we should

not expected a long lag between a shock and the adjustment response from the exchange rate. The

second issue is handled less satisfactorily, as the modeling procedure is based on a linearization

of the non-linear model about the point of identification failure. This method addresses issues

that arise from identification failure, but as recent research indicates, this may provide a poor

approximation to the desired model (Kilic, 2016).

Further, Hill (2008) notes that the traditional method involving a truncated Taylor approxima-

tion simply “directs power toward low order polynomials” and is therefore not truly a test against

smooth transition alternatives. He draws attention to the fact that treating d as a parameter to be

estimated yields a non-standard limiting distribution, a fact that was ignored in the early literature.

Importantly, he notes that a test that only considers a finite number of conditions (e.g. a small

support for d or a finite-order polynomial approximation) can give rise to inconsistency. Francq,

Horvath, and Zakoı̈an (2010) also examine non-standard tests that result due to the presence of nui-

sance parameters when testing for linearity against smooth transition autoregressive alternatives.

Taylor et al. (2001) follow a sequential modeling procedure similar to those suggested in

Granger and Teräsvirta (1993), Terasvirta (1994), and Eitrheim and Teräsvirta (1996). Kilic (2016)

follows the specification procedure in Teräsvirta (2004) and utilizes the diagnostic tests suggested

by Eitrheim and Teräsvirta (1996) for the first differenced model

∆qt =
[
β∗0 +

p∑
i=1

β∗i ∆qt−i

]
Φ(γ,∆qt−d) + ut.
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This class of models fits into the class of additive nonlinear models

yt =

p∑
j=1

βjgj(Xj,t, πj) + Z ′tζ + εt.

In particular, there is no need for different models for each d, as the model corresponding to a

particular d is just a restriction on a larger model:

yt =
s∑
j=1

β̃jyt−j +
r∑

d=1

s∑
j=1

β̃∗j,dyt−jΦ(γ; yt−d) + εt

= Z ′tζ +

p∑
j=1

βjgj(Xj,t, πj) + εt

where p = rs, Zt = (yt−1, . . . , yt−s), and gj(Xj,t, πj) ≡ yt−jΦ(γ; yt−d). Letting r → ∞, we

can then form a test of no nonlinearity via the null hypothesis that β = 0 or a test of no omitted

nonlinearity with the null hypothesis that a subset of β is the zero vector.

Typically in this literature, γ = 0 drives identification failure in β. This parameterization may

lead to issues with inference under the framework presented here, since β = 0 would also induce

the identification failure of γ. We are not aware of any study of such ‘double identification failure.’

For this setup, we will require that either γ > 0 or β > 0 so that only a single point of identification

failure exists.

3.6.2 Weak Identification in Time Series

Here we describe the relationship between weakly identified ARMA(p,q) models, the common

roots problem, and weak instruments in time series models.

Weak Identification and Common Roots

First, consider the ARMA(1,1) model yt = (β+π)yt−1+εt−πεt−1. Under commonly assumed

conditions, one can show that when β = 0, the model reduces to yt = εt.12 Observe that the model

can be rewritten as
(
1 − (β − π)L

)
yt = (1 − πL)εt where L is the lag operator. When β = 0,

12Write
(
1− (β − π)L

)
yt = (1− πL)εt and assume π < 1. Then the model can be written using a geometric sum(

1− β
∑∞

j=0 π
jLj+1

)
yt = εt.
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the roots of both the AR and MA polynomials are 1/π. It is clear that if β = 0 then π is not

identified; this is referred to as the ‘common roots problem.’ Researchers typically assume away

this problem, as it leads to non-standard asymptotic analysis.

Further, Andrews and Ploberger (1996) note that ARMA models provide parsimonious repre-

sentations of many different stationary time series, Poterba and Summers (1988) show that many

mean-reverting financial time series can be represented by ARMA models, and Taylor (2005)

shows that the ARMA model can be used to represent certain price-trend models. An issue arises

with the assumption that the time series possesses no common roots in practice, as one does not

know the data generating process that generated the data being analyzed. In particular, this is an

issue for practitioners representing financial series with ARMA models, as with many such se-

ries, we expect there to be no correlation across time due to the forces associated with arbitrage.

The no arbitrage condition manifests itself in the ARMA model as a common root, indicating that

tests based on standard asymptotic analysis may be distorted. That is, inference based on standard

asymptotics, which do not account for the distributions induced by weak or non-identified param-

eters, may tend to over-reject the null hypothesis that β = 0. Related issues specifically for the

ARMA(1,1) model are studied by Andrews and Ploberger (1996); Andrews, Liu, and Ploberger

(1998); Andrews and Cheng (2012a) and Dennis (2019).

In general, we can use the framework developed in this paper, in particular that developed

section B.2, to analyze the ARMA(p,q) model, thereby extending current research. Write the

ARMA(p,q) model in the form Φ(L)yt = Υ(L)εt where Φ(L) =
(
1− (β1 + π1)L

)
· · ·
(
1− (βp +

πp)L
)

and Υ(L) = (1 − π1) · · · (1 − πq). For example, the ARMA(2,2) model can be written(
1 − (β1 − π1)L

)(
1 − (β2 − π2)L

)
yt = (1 − π1L)(1 − π2L)εt. Assume that εt ∼ iid (0, ζ) and

1− βi − πi < 1 for each i. Quasi-maximum likelihood is used to estimate the model with

mt(θ) = ln(ζ) +
(Φ(L)

Υ(L)
yt/ζ

)2

Note that this example could be extended in a straight forward manner to account for analysis of

ARMA models with conditional volatility.

91



www.manaraa.com

This is related to the issue of studying a unit root ARMA process with an MA parameter close

to −1 as studied by Schwert (1989), Davidson (2010) and the references there in. However, we do

not study unit root processes or the distribution of the ADF test statistic.

Weak Instruments

The common roots problem is related to weak instruments in time series models. Consider

the model yt = αzt + εt where we only observe zt with error xt = zt + ηt. zt is assumed to

follow a time series process. For clarity of exposition, we demonstrate this section assuming zt

is ARMA(1,1): zt = (β + π)zt−1 + et − πet−1, but more general models are allowed under the

framework established in section B.2.

We let εt and et be correlated, but assume that εt and et−1 are not correlated. The idea used

to conduct inference on α is to use xt−1 as an instrument for zt. When β is close to zero in

a statistical sense,13 the influence of zt−1 on zt drops to zero. Hence, the correlation between

xt−1 and zt diminishes, inducing a weak instruments problem. In particular, we can show that

E[ztzt−1] = σ2
[(

1−(β+π)(1−β)
1−(β+π)

)
(β + π)− π

]
which tends to 0 as β → 0.

Common in the literature is to assume that zt follows an AR(1) process. This amounts to the

identification restriction that π = 0. The weak instruments issue described above still manifests

near β = 0, as having both β = 0 and π = 0 is a special case of a common root. In general,

however, π need not be zero, and how relaxing this assumption will affect inference on α is not

clear and would be an interesting topic for study.

3.6.3 Nonlinear Binary Choice Model

Andrews and Cheng (2013) demonstrate that their framework is appropriate for analysis of the

nonlinear binary choice model

yi = 1(y∗i > 0) with y∗i = βg(Xi, π) + Z ′iζ − εi

where g(Xi, π) ∈ R is known up to the finite dimensional parameter π and estimation is carried

out via maximum likelihood under some assumption on the specification of P (yi = 1|Xi, Zi) such

13e.g. β ≤ b/
√
n for some small b <∞, or technically, in terms of drifting sequences,

√
nβn → b <∞.
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as a probit or logit model. Their framework allows for vector β, but requires that all elements of

π exhibit the same identification strength. Put another way, this requires that for a vector β = βn

allowed to drift to zero, either all elements of βn drift to zero at the same rate, or the identification

strength of π must depend upon maxk |βk,n|. The latter case is not handled by their theory, and the

former case seems to be a restrictive assumption.

The framework developed in section B.2 in this paper, however, is appropriate for analysis

of the nonlinear binary choice model when the elements of π are allowed to exhibit different

identification strengths. This is a relaxation of the assumption mentioned in the previous paragraph.

In particular, the theory developed here is appropriate for models of the form

yi = 1(y∗i > 0) with y∗i =

p∑
j=1

βjgj(Xj,i, πj) + Z ′iζ − εi.

Observe that estimation and inference, allowing for mixed identification strength, for the model y∗i

is covered by the theory in Cheng (2015). However, her theory is only appropriate for the additive

nonlinear model estimated by least squares; hence it does not apply to estimation and inference for

the model given jointly by yi and y∗i , and in particular, y∗i is usually not observed for this class of

models.

3.6.4 Linear IV Model

Andrews and Cheng (2012a,b) demonstrate that the linear instrumental variable model

y1,i = y2,iπ + u∗i , y2,i = Z ′iβ + v∗i

fits within their framework when estimated via limited information maximum likelihood (LIML).

In particular, the reduced form equations y1,i−π ·Z ′iβ+ui and y2,i−Z ′iβ+vi with ui = u∗i +πv∗i ,

vi = v∗i , and (ui, vi) ∼ N(0, Y ) are estimated with the likelihood function

Qn(θ) = log |Y |+ 1

n

n∑
i=1

εi(β, π)′Y −1εi(β, π)
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where εi(β, π) =

y1,i − π · Z ′iβ

y2,i − Z ′iβ

. Similarly to the discussion for the nonlinear binary choice

model, their theory only accommodates a single endogenous covariate in this setup, as they do

not allow for mixed identification strength in π. The theory developed in this paper, however, can

be used to analyze models in this setup with more that one endogenous covariate.14 Consider the

structural model

yi = x1,iπ1 + x2,iπ2 + u∗i , x1,i = Z ′1,iβ1 + vi, x2,i = Z ′2,iβ2 + ηi.

The reduced form equations are

yi = Z ′1,iβ1π1 + Z ′2,iβ2π2 + ui, x1,i = Z ′1,iβ1 + vi, x2,i = Z ′2,iβ2 + ηi

where ui = v∗i π1+η∗i π2+u∗i , and similarly we can assume (ui, vi, ηi) ∼ N(0, Y ). LIML estimation

of instrumental variables models with weak instruments has been studied by Bound, Jaeger, and

Baker (1996), Staiger and Stock (1997), Moreira (2003), Andrews, Moreira, and Stock (2006),

Chao and Swanson (2007) and many others.

In addition to not allowing mixed identification strength (Andrews and Cheng, 2012a, 2013,

2014) and restricting the class of allowable models (Cheng, 2015), previous results for identifi-

cation robust inference do not consider high dimensional parameters or max tests. In contrast,

our theory allows for testing a large dimensional parameter by estimation of many parsimoniously

constructed models and a test on the maximum of the sequence of estimators attained from the

estimation.

Inference in models with many parameters is typically conducted with an imposed sparsity

assumption by forcing a large number of the parameters to be equal to zero with a penalized es-

timator such as LASSO (Tibshirani, 1996) in a way that precludes inference on those parameters.

14Andrews and Stock (2007) note that the most important case in empirical applications involves only a single right
hand side endogenous covariate; however, this does not mean that the ability to analyze a system with more than one
endogenous covariate is not important.
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As a result, valid inference can only be conducted on the remaining non-zero parameters in many

cases. Recent work focusing on this inference issue has relied on ‘desparsification’ (van de Geer

et al., 2014; Caner and Kock, 2018; Dezeure, Bühlmann, and Zhang, 2017) or ‘debiasing’ (Belloni

et al., 2014b; Wooldridge and Zhu, ming) the LASSO estimator; however, using these procedures

to conduct inference when some parameters are weakly identified has not been studied. In particu-

lar, one of the nice features of the LASSO is that it is a convex relaxation of a nonconvex problem;

however, this convexity is not guaranteed when operating on nonlinear models.

Further, the LASSO sets exactly equal to zero any parameter that cannot be statistically dis-

tinguished from zero. Belloni et al. (2016), Leeb and Pötscher (2008) and Pötscher (2009) note

that this can be problematic for conducting inference with approximately sparse models that in-

clude both variables with small but nonzero coefficients and strong predictors, since the LASSO

will exclude the variables with small coefficients, which the authors note, can lead to omitted vari-

able bias and irregular sampling behavior. Our approach differs in that we estimate a collection

of parsimonious models by considering each parameter in turn and evaluating the maximum of

the estimated values, thereby allowing inference on all parameters (Ghysels et al., 2016a; Hill and

Dennis, 2018; Ghysels, Hill, and Motegi, ming).

In general, we may have a desire to test a large subset of our parameters based on economic

reasoning or functional form. For example, Belloni et al. (2014b,a) perform a follow-up study

regarding the effect of legalized abortion on crime (Donohue and Levitt, 2001, 2008; Foote and

Goetz, 2008) in which they examine inference on treatment after selection amongst a high dimen-

sional set of controls. They include a large set of controls that allows for flexible trends that vary

with state-level characteristics. In particular, they alter the baseline model of Donohue and Levitt

(2001) to include 284 variables15 that allow for a “cubic trend for the level of the crime rate and

abortion rate which is allowed to depend on observed state-level characteristics.” The data set con-

sists of only 600 observations, and they illustrate the poor performance of OLS due to the large

15“the levels, differences, initial level, initial difference, and within-state average of the eight state-specific time-
varying observables, the initial level and initial difference of the abortion rate relevant for crime type, quadratics in
each of the preceding variables, interactions of all the aforementioned variables with t and t2, and the main effects t
and t2.”
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number of covariates relative to observations.

Their LASSO-double-selection method suggests that i) results based on a small set of intu-

itively selected controls differ from results obtained through formal variable selection and ii) ac-

counting for nonlinear trends in the data affects the results, as well. Based on this discrepancy

between results based on formal selection and intuitive selection, we can use the framework devel-

oped in this paper to examine whether the group of intuitively or economically relevant controls

is relevant for the regression. Alternatively, we can use the max test to construct a test of the rel-

evance of the controls added for fidelity, such as the group of all interactions of variables that are

meant to allow for a more flexible functional form.

For simplicity of exposition, consider the model with one endogenous covariate

yt = xtπ + Z ′tω + u∗t , xt = Z ′tβ + v∗t

where β ∈ Rdβ with dβ = o(n) and t is used for the observation to avoid confusion with the

parsimonious model index below. Here we wish to test the relevance of a potentially large subset

of instruments, so the null hypothesis is H0 : (β′2, ω
′
2)′ = 0 for some subvector β2 of β = (β′1, β

′
2)′

and similarly for ω2. The reduced form parsimonious models are

yt = Z ′1,t(β1π + ω1) + Z ′2,i,t(β2,iπ + ω2,i) + ui,t, xt = Z ′1,tβ1 + Z ′2,i,tβ2,i + vi,t

In its simplest form, Z1 will be empty (β1 = 0), so each parsimonious model will have exactly one

exogenous covariate, Z2,i.

This is related to the literature that studies estimation and testing with many weak instruments

(Bekker, 1994; Bekker and Kleibergen, 2003; Chao and Swanson, 2005; Chamberlain and Im-

bens, 2004; Andrews and Stock, 2007; Hansen, Hausman, and Newey, 2012; Hausman, Newey,

Woutersen, Chao, and Swanson, 2012) and many others. In particular, Andrews and Stock (2007)

examine the properties of certain tests and discuss the rate condition, k3/n→ 0 needed for correct

asymptotic size.
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3.7 Monte Carlo Simulations

We consider the additive non-linear model

Yt = ζ ′Zt +

dβ∑
j=1

βjg(Xj,t, πj) + εt

where

g(Xj,t, πj) =
[
1− exp(−πj,1(Xj,t − πj,2))

]−1

.

For computational simplicity we fix πj,1 = 10 and only estimate πj,2. We consider 3 data generating

processes:

1) Independent regressors: Xj,t, Zj,t, εt ∼ iid N(0, 1). Under this DGP, Zt ⊥ Xt, Xt ⊥ εt, and

Zt ⊥ εt.

2) Block-wise Independent, Correlated Regressors: Xt ∼ N(0dβ ,Σx), Zt ∼ N(0dβ ,Σz), but

Zt ⊥ Xt. εt ∼ iid N(0, 1).

3) Correlated Regressors: (X ′t, Z
′
t)
′ ∼ N(0dβ+dζ ,Σ). εt ∼ iid N(0, 1).

Without loss of generality, we set dζ = 2 where the first element corresponds to a constant.

For each DGP, we consider n = 100, 500 and the scenarios β1 ∈ {0, b1/
√
n, b1} for b1 = 1.

Additionally, we consider dλ ∈ {1, 10, 20, 5
√
n} and kn ∈ {1, 10, 20, 5

√
n} for kn ≤ dλ.

We will test if a subvector of β is different from zero. Again without loss of generality, we test

the subvector λ = (β2, . . . , βdβ)′. Hence the parsimonious models are constructed and estimated

as

Yt = ζ ′Zt + β1g(X1,t, π1) + λ(i)g(X(i),t, π(i)) + ν(i),t.

We consider the following hypotheses:

1) H0 : λ = 0
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2) Local Alternative H1 : λ1 = b2/
√
n, b2 ∈ {1, 2, 5, 10}, λj = 0 for every j > 1.

3) H2 : λ1 = 1, λj = 0 for every j > 1.

The parsimonious models are estimated via least squares:

Q(i),n(θ(i)) =
1

n

n∑
t=1

ν(i),t(θ(i))
2,

ν(i),t(θ(i)) = Yt − ζ ′Zt − β1g(X1,t, π1)− λ(i)g(X(i),t, π(i)).

This gives the gradient and hessian of the criterion function:

∇θ(i)m(i),t(θ(i)) = 2ν(i),t(θ(i))∇θ(i)ν(i),t(θ(i))

and

∇2
θ(i)
m(i),t(θ(i)) = 2ν(i),t(θ(i))∇2

θ(i)
ν(i),t(θ(i)) + 2∇θ(i)ν(i),t(θ(i))∇θ(i)ν(i),t(θ(i))

′

where

∇θ(i)ν(i),t(θ(i)) = −



Zt

g(X1,t, π1)

g(X(i),t, π(i))

β1
∂
∂π1
g(X1,t, π1)

λ(i)
∂

∂π(i)
g(X(i),t, π(i))


and

∇2
θ(i)
ν(i),t(θ(i)) =
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−



0 0 0 0 0

0 0 0 ∂
∂π1

g(X1,t, π1) 0

0 0 0 0 ∂
∂π(i)

g(X(i),t, π(i))

0 ∂
∂π1

g(X1,t, π1) 0 β1
∂
∂π1

∂
∂π′1

g(X1,t, π1) 0

0 0 ∂
∂π(i)

g(X(i),t, π(i)) 0 λ(i)
∂

∂π(i)

∂
∂π′

(i)
g(X(i),t, π(i))



and m(i),t(θ(i)) = ν(i),t(θ(i))
2, g(Xj,t, πj) =

[
1− exp(−πj,1(Xj,t − πj,2))

]−1

∂

∂πj
g(Xj,t, πj) =

[
1− exp(−πj,1(Xj,t − πj,2))

]−2[
exp(−πj,1(Xj,t − πj,2)

]
πj,1

and

∂

∂πj

∂

∂π′j
g(Xj,t, πj) = 2

[
1− exp(−πj,1(Xj,t − πj,2))

]−3[
exp(−πj,1(Xj,t − πj,2)

]2

π2
j,1

+
[
1− exp(−πj,1(Xj,t − πj,2))

]−2[
exp(−πj,1(Xj,t − πj,2)

]
π2
j,1

since we fix πj,1 = 10. Note that under the null hypothesis

1

n

n∑
t=1

∇2
θ(i)
m(i),t(θ(i)) =

1

n

n∑
t=1

∇θ(i)ν(i),t(θ(i))∇θ(i)ν(i),t(θ(i))
′ + op,π(i),K

(1).

When lK is not empty, we have

K(i),K(π(i),lK ,0; γ0) = Eγ0∇θ(i)ν(i),t(θ(i))∇θ(i)ν(i),t(ψ(i),K− , π(i),lK ,0)′S ′βlK

where, for example,∇θ(i)ν(i),t(ψ(i),K− , π(i),lK ,0)′S ′βlK
= g(X(i),t, π(i),0) when l(i),K = {2}.

The following table shows rejection frequencies for the Wald, Max, and Max-t tests using

various inference procedures as described. The standard inference method is labeled standard, the

two inference procedures discussed in this paper are labeled BS1 and BS2, and Taylor denotes the

respective tests conducted on the model linearized with a first order Taylor expansion. Here, we

present results only for the second data generating process with block-wise independent, correlated
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regressors, as the others yield similar results.

Table 3.2: Max Test Simulations - Additive Nonlinear Model under the Null Hypothesis

kλ,n = 1 kλ,n = 20

b1 0 1 2 5 10 14 0 1 2 5 10 14

Wald Test Standard 0.11 0.12 0.12 0.13 0.12 0.12 0.83 0.84 0.83 0.83 0.84 0.84
Max Test Standard 0.10 0.10 0.10 0.10 0.10 0.10 0.12 0.11 0.11 0.11 0.11 0.11

Max t-Test Standard 0.11 0.12 0.11 0.11 0.11 0.11 0.19 0.19 0.19 0.19 0.20 0.20
Wald Test BS1 0.06 0.06 0.06 0.06 0.06 0.06 0.68 0.68 0.67 0.68 0.69 0.69
Max Test BS1 0.04 0.04 0.04 0.04 0.04 0.04 0.03 0.03 0.03 0.03 0.03 0.03

Max t-Test BS1 0.06 0.06 0.06 0.06 0.06 0.06 0.13 0.12 0.13 0.13 0.13 0.13
Wald Test BS2 0.06 0.06 0.06 0.06 0.06 0.06 0.25 0.26 0.26 0.26 0.25 0.25
Max Test BS2 0.05 0.05 0.05 0.05 0.05 0.05 0.04 0.04 0.04 0.04 0.04 0.04

Max t-Test BS2 0.06 0.06 0.06 0.06 0.06 0.06 0.08 0.08 0.08 0.08 0.08 0.09
Wald Test Taylor 0.09 0.09 0.09 0.09 0.09 0.09 0.52 0.52 0.52 0.52 0.52 0.52
Max Test Taylor 0.60 0.60 0.60 0.60 0.60 0.60 0.99 0.99 0.99 0.99 0.99 0.99

Max t-Test Taylor 0.09 0.09 0.09 0.09 0.09 0.09 0.16 0.16 0.16 0.16 0.16 0.16

Rejection Frequencies, Experiment: 1, DGP: 2, Hyp: Null, n = 200, J = 10000, α = 0.05

The Wald tests listed as BS1 and BS2 are the bootstrapped variants of Cheng’s (2015) Wald test,

and the comparison between these tests and the standard Wald test for the columns corresponding

to kλ,n = 1 tell the same story that Cheng (2015) tells in her paper. That is, the standard Wald test

exhibits size distortions when weak identification is present, and accounting for weak identification

adjusts the size of the test. The Max test variants also illustrate this same story.

This table further illustrates the effect of the combination of weak identification and a parameter

of large dimension on inference. When a large dimensional parameter is introduced, the Wald test

begins to exhibit considerable size distortions. This is true even for the Wald tests that account for

weak identification. The Max test, however, is able to accommodate testing the large dimensional

parameter with a much lower, if any, size distortion.

Since weak identification is an issue with nonlinear models, we linearize these models with

a first order Taylor expansion and test the corresponding parameters of interest in the linearized

model. The rows, labeled Taylor, at the bottom of the table give the results for these tests. In the

low dimensional model, the rejection frequencies indicate that the linearized tests do not alleviate

the size distortions induced by weak identification to the same degree as the tests that accommodate
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weak identification using the true model. We do not explore reasons for this, but we suspect that

the first order expansion does not provide an adequate approximation to the true model. It would be

interesting to examine if a higher order Taylor expansion paired with the Max test would provide

an adequate work around for this issue,16 but this is beyond the scope of this paper, so we leave it

for future research.

The histograms shown below provide the simulated distribution of the test statistics for the case

β1 = 1. These histograms illustrate the story told above. In particular, it is evident that the standard

tests are not able replicate the tail behavior of the test statistic when weak identification is present

and the parameter dimension is large. The max test variants, however, are able to provide a much

closer approximation to the tail behavior. Further, the final two tables demonstrate that the tests

have non-trivial power against the local alternative design and power approaching one against the

alternative hypothesis design.

Figure 3.1: Empirical Distribution of the Max Test

16Thanks to Eric Ghysels and Valentin Verdier for this suggestion.
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Figure 3.2: Empirical Distribution of the Max Test

Table 3.3: Max Test Simulations - Additive Nonlinear Model under the Local Alternative Hypoth-
esis

kλ,n = 1 kλ,n = 20

b1 0 1 2 5 10 14 0 1 2 5 10 14

Wald Test Standard 0.21 0.22 0.20 0.22 0.21 0.21 0.91 0.91 0.90 0.91 0.91 0.91
Max Test Standard 0.19 0.20 0.20 0.20 0.19 0.19 0.25 0.25 0.25 0.26 0.25 0.25

Max t-Test Standard 0.20 0.20 0.21 0.21 0.20 0.21 0.50 0.50 0.51 0.50 0.50 0.50
Wald Test BS1 0.12 0.12 0.12 0.12 0.12 0.12 0.81 0.80 0.79 0.80 0.80 0.80
Max Test BS1 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.10

Max t-Test BS1 0.12 0.12 0.12 0.12 0.12 0.12 0.42 0.42 0.42 0.43 0.43 0.43
Wald Test BS2 0.13 0.13 0.13 0.13 0.13 0.13 0.39 0.39 0.39 0.39 0.39 0.39
Max Test BS2 0.11 0.11 0.12 0.12 0.12 0.11 0.11 0.10 0.11 0.11 0.11 0.11

Max t-Test BS2 0.13 0.13 0.13 0.13 0.13 0.13 0.34 0.33 0.33 0.33 0.33 0.33
Wald Test Taylor 0.15 0.15 0.15 0.15 0.15 0.15 0.61 0.61 0.61 0.61 0.61 0.61
Max Test Taylor 0.71 0.71 0.71 0.71 0.71 0.71 1.00 1.00 1.00 1.00 1.00 1.00

Max t-Test Taylor 0.15 0.15 0.15 0.15 0.15 0.15 0.37 0.37 0.37 0.37 0.37 0.37

Rejection Frequencies, Experiment: 1, DGP: 2, Hyp: Local Alternative, n = 200, J = 10000, α = 0.05.
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Table 3.4: Max Test Simulations - Additive Nonlinear Model under the Alternative Hypothesis

kλ,n = 1 kλ,n = 20

b1 0 1 2 5 10 14 0 1 2 5 10 14

Wald Test Standard 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Max Test Standard 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Max t-Test Standard 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Wald Test BS1 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Max Test BS1 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Max t-Test BS1 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Wald Test BS2 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Max Test BS2 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Max t-Test BS2 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Wald Test Taylor 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Max Test Taylor 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Max t-Test Taylor 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Rejection Frequencies, Experiment: 1, DGP: 2, Hyp: Alternative, n = 200, J = 10000, α = 0.05.

Table 3.5: Max Test Simulations - Additive Nonlinear Model

Hyp: Null Hyp: Local Alt
b1 0 22 0 22

Wald Test Standard 0.99 0.99 1.00 1.00
Max Test Standard 0.12 0.11 0.37 0.37

Max t-Test Standard 0.17 0.17 0.70 0.70
Wald Test BS1 0.90 0.90 0.96 0.96
Max Test BS1 0.04 0.04 0.17 0.17

Max t-Test BS1 0.09 0.09 0.59 0.59
Wald Test BS2 0.43 0.43 0.62 0.62
Max Test BS2 0.04 0.04 0.19 0.19

Max t-Test BS2 0.07 0.08 0.55 0.55
Wald Test Taylor 0.78 0.78 0.86 0.86
Max Test Taylor 0.40 0.40 0.76 0.76

Max t-Test Taylor 0.12 0.12 0.58 0.58

Rejection Frequencies, Experiment: 1, DGP: 2, n = 500, J = 10000, α = 0.05, kλ,n = 50.

3.8 Conclusion

Traditional Inference is distorted in the presence of large dimensional parameters and param-

eter identification failure. Previous work addresses these issues in isolation, but some economic

questions require considering both of these issues jointly. We provide a testing framework that ac-

commodates a large dimensional parameter when some of the parameter elements may be weakly
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identified. The procedure is based on the maximum estimate in absolute value taken from a se-

quence of parameters that are estimated from carefully constructed sub-models and is implemented

with a Gaussian multiplier bootstrap. Each sub-model is constructed by including one element

from the parameter of interest. The test statistic is then formed from the maximum value of the

estimates of the parameters of interest across these sub-models.

Simulations indicate that tests ignoring identification failure tend to over-reject the null hy-

pothesis when the dimension of the parameter being tested is large, while the testing procedure

that is designed to accommodate identification failure tends to control these rejection frequencies.

Further, this testing procedure is able to reproduce existing results for the Wald test under weak

identification when the dimension of the parameter being tested is small. Additionally, the Wald

test of Cheng (2015), though designed to accommodate weakly identified parameters, tends to

over-reject the null hypothesis when the dimension of the parameter being tested is large. How-

ever, the testing procedure presented here, based on the maximum estimated value, tends to better

control empirical size in the presence of weak identification when the dimension of the parameter

being tested is large.
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APPENDIX A

APPENDIX FOR TESTING WHITE NOISE WHEN SOME PARAMETERS MAY BE
WEAKLY IDENTIFIED

A.1 Appendix: Proofs of Main Results

A.1.1 Appendix: Proof of Lemma 2.3.1

Lemma. 2.3.1. Let Assumptions 3 - 11 hold. For some non-unique sequence of positive integers

{Ln} with Ln →∞ and Ln = o(n),

(a) under {γn} ∈ Γ(γ0, 0, b) with ||b|| <∞,

∣∣∣ max
1≤h≤Ln

sup
π∈Π

(
√
n|ρ̂n(h; π)− ρ(h)|)− max

1≤h≤Ln
sup
π∈Π

(|Zψn (h, π)|)
∣∣∣

≤ max
1≤h≤Ln

sup
π∈Π

(|
√
n(ρ̂n(h; π)− ρ(h))−Zψn (h, π)|) p−→ 0.

(b) under {γn} ∈ Γ(γ0,∞, ω0),

∣∣∣ max
1≤h≤Ln

(
√
n|ρ̂n(h)−ρ(h)|)− max

1≤h≤Ln
(|Zθn(h)|)

∣∣∣ ≤ max
1≤h≤Ln

(|
√
n(ρ̂n(h)−ρ(h))−Zθn(h)|) p−→ 0.

Proof. Recall

rθt (h) =
εtεt−h − E[εtεt−h]−Dθ(h)′J−1(γ0)mθ

t

E[ε2
t ]

rψ,nt (h, π) =
εt(ψ0,n, π)εt−h(ψ0,n, π)− E[εtεt−h]−D(h, π)′H−1

n (π; γ0)mψ
t (ψ0,n, π)

E[ε2
t ]

.

Define under strong and weak identification, respectively, zθt (h) = rθt (h) − ρ(h)rθt (0) and

zψ,nt (h, π) = rψ,nt (h, π)− ρ(h)rψ,nt (0, π).

Define Zθn(h) = 1√
n

∑n
t=1+h z

θ
t (h) and Zψn (h, π) = 1√

n

∑n
t=1+h z

ψ,n
t (h, π).

Claim (a). We will prove for each h

Xn(h) ≡ sup
π∈Π
|
√
n(ρ̂n(h; π)− ρ(h))− 1√

n

n∑
t=1+h

zψ,nt (h, π)| p−→ 0. (A.1)
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The claim will then follow from Lemma A.2 in Hill and Motegi (2018).

First observe that by Lemma A.2.4(a), for h ≥ 0,

√
n
( 1

n

n∑
t=1+h

[εt(ψ̂n(π), π)εt−h(ψ̂n(π), π)]− E(εtεt−h)
)

=
√
n
( 1

n

n∑
t=1+h

[
εtεt−h − E(εtεt−h)

])
+
(
H−1
n (ψ0,n, π)

1√
n

n∑
t=1

mψ
t (ψ0,n, π)

)′
Dn(h, π)

+
√
nEγn

[
εt(ψ0,n, π)εt−h(ψ0,n, π)− εtεt−h

]
+ opπ(1)

Next, define R̂n(h, ψ̂n(π), π) = 1
n

∑n
t=1+h[εt(ψ̂n(π), π)εt−h(ψ̂n(π), π)] and R(h) =

E(εtεt−h), and observe

√
n(ρ̂n(h; π)− ρ(h))

=
√
n(
R̂n(h, ψ̂n(π), π)

R̂n(0)
− R(h)

R(0)
)

=

√
n(R̂n(h, ψ̂n(π), π)−R(h))

R̂n(0, ψ̂n(π), π)
− R(h)

R̂n(0, ψ̂n(π), π)R(0)

√
n(R̂n(0, ψ̂n(π), π)−R(0))

=

√
n(R̂n(h, ψ̂n(π), π)−R(h))

R(0)
(1 + op,π(1))

− R(h)

R(0)2

√
n(R̂n(0, ψ̂n(π), π)−R(0))(1 + op,π(1))

=
( 1√

n

n∑
t=1+h

rψ,nt (h, π)
)

(1 + op,π(1))− ρ(h)
( 1√

n

n∑
t=1+h

rψ,nt (0, π)
)

(1 + op,π(1))

=
( 1√

n

n∑
t=1+h

[
rψ,nt (h, π)− ρ(h)rψ,nt (0, π)

])
(1 + op,π(1))

=
1√
n

n∑
t=1+h

[
rψ,nt (h, π)− ρ(h)rψ,nt (0, π)

]
+ op,π(1)

where the last equality follows from Theorem 17.5 in Davidson (1994) and Theorem 1.6 in

McLeish (1975).
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Claim (b). We will prove for each h

Xn(h) ≡ |
√
n(ρ̂n(h)− ρ(h))− 1√

n

n∑
t=1+h

zθt (h)| p−→ 0. (A.2)

The claim will then follow from Lemma A.2 in Hill and Motegi (2018).

First observe that by Lemma A.2.4(b), for h ≥ 0,

√
n
( 1

n

n∑
t=1+h

[εt(θ̂n)εt−h(θ̂n)]− E(εtεt−h)
)

=
( 1√

n

n∑
t=1+h

[
εt(θn)εt−h(θn)− E(εtεt−h)

])
+
(
J−1
n (θn)

1√
n

n∑
t=1

mθ
t (θn)

)′
B−1(βn)Dθn(h) + op(1)

=
1√
n

n∑
t=1+h

(
εtεt−h − E[εtεt−h] +

[
J−1
n (γ0)mθ

t (θn)
]′
B−1(βn)Dθn(h)

)
+ op(1)

Next, define R̂n(h) = 1
n

∑n
t=1+h[εt(θ̂n)εt−h(θ̂n)] and R(h) = E(εtεt−h), and observe

√
n(ρ̂n(h)− ρ(h))

=
√
n(
R̂n(h)

R̂n(0)
− R(h)

R(0)
)

=

√
n(R̂n(h)−R(h))

R̂n(0)
− R(h)

R̂n(0)R(0)

√
n(R̂n(0)−R(0))

=

√
n(R̂n(h)−R(h))

R(0)
(1 + op(1))− R(h)

R(0)2

√
n(R̂n(0)−R(0))(1 + op(1))

=
( 1√

n

n∑
t=1+h

rθt (h)
)

(1 + op(1))− ρ(h)
( 1√

n

n∑
t=1+h

rθt (0)
)

(1 + op(1))

=
( 1√

n

n∑
t=1+h

[
rθt (h)− ρ(h)rθt (0)

])
(1 + op(1))

=
1√
n

n∑
t=1+h

[
rθt (h)− ρ(h)rθt (0)

]
+ op(1)

where the last equality follows from Theorem 17.5 in Davidson (1994) and Theorem 1.6 in
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McLeish (1975).

A.1.2 Appendix: Lemma A.1.2

Lemma A.1.2. (a) Let Assumptions 3, 7, 8, 1, 4(i), 5, 9, and 11(i) hold, and let {γn} ∈ Γ(γ0, 0, b)

with ||b|| < ∞. Let {Zψ(h, π) : h ∈ N, π ∈ Π} be a Gaussian process with mean

lim
n→∞

z2,ψ,n
s (h, π) < ∞ and variance lim

n→∞
1
n

∑n
s,t=1 E[z1,ψ,n

s (h, π)z1,ψ,n
t (h, π)] < ∞ and co-

variance kernel lim
n→∞

1
n

∑n
s,t=1 E[z1,ψ,n

s (h, π) z1,ψ,n
t (h̃, π̃)]. Then for some non-unique se-

quence of positive integers {Ln} with Ln →∞ and Ln = o(n),

∣∣∣ max
1≤h≤Ln

|Zψn (h, π̂n)| − max
1≤h≤Ln

|Zψ(h, π∗(b, γ0))|
∣∣∣

≤ max
1≤h≤Ln

|Zψn (h, π̂n)−Zψ(h, π∗(b, γ0))| p−→ 0.

(b) Let Assumptions 3, 7, 8, 2, 4(ii), 6, 10, and 11(ii) hold, and let {γn} ∈

Γ(γ0,∞, ω0). Let {Zθ(h) : h ∈ N} be a zero mean Gaussian process with variance

lim
n→∞

1
n

∑n
s,t=1 E[zθs(h)zθt (h)] < ∞ and covariance kernel lim

n→∞
1
n

∑n
s,t=1E[zθs(h)zθt (h̃)]. Then

for some non-unique sequence of positive integers {Ln} with Ln →∞ and Ln = o(n),

∣∣∣ max
1≤h≤Ln

|Zθn(h)| − max
1≤h≤Ln

|Zθ(h)|
∣∣∣ ≤ max

1≤h≤Ln
|Zθn(h)−Zθ(h)| p−→ 0.

Proof. The proof of claim (b) follows similarly to the proof of Lemma 2.2 in Hill and Motegi

(2018). For part (a), recall that π∗(b, γ0) in (a) is a random variable, so the proof of claim (a)

requires more steps. First, we must prove weak convergence; then, we must show joint convergence

of π̂n and Zψn (h, π).

(a) We prove for each L ∈ N

{Zψn (h, π) : 1 ≤ h ≤ L, π ∈ Π} ⇒ {Zψ(h, π) : 1 ≤ h ≤ L, π ∈ Π} (A.3)

{Zψn (h, π̂n) : 1 ≤ h ≤ L} d−→ {Zψ(h, π∗) : 1 ≤ h ≤ L} (A.4)
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In the first step, we establish weak convergence over h and π; this involves the finite dimen-

sional convergence and stochastic equicontinuity of Zψn (h, π). The second step then will follow

from the joint convergence of ψ̂n and π̂n. We first split Zψn into a mean zero component and a

component that converges in probability uniformly over Π.

Recall that zψ,nt (h, π) = rψ,nt (h, π)− ρ(h)rψ,nt (0, π) and

rψ,nt (h, π) =
εt(ψ0,n, π)εt−h(ψ0,n, π)− E[εtεt−h]−D(h, π)′H−1

n (π; γ0)mψ
t (ψ0,n, π)

E[ε2
t ]

.

Observe that by the mean value theorem, for some γ̃n such that ||γ̃n − γn|| ≤ ||γ0,n − γn||,

mψ
t (ψ0,n, π) = mψ

t (ψ0,n, π)− Eγn [mψ
t (ψ0,n, π)] + Eγn [mψ

t (ψ0,n, π)]

= mψ
t (ψ0,n, π)− Eγn [mψ

t (ψ0,n, π)] + Eγ0,n [mψ
t (ψ0,n, π)]

+ βn
∂

∂β̃
Eγ̃n [mψ

t (ψ0,n, π)]

= mψ
t (ψ0,n, π)− Eγn [mψ

t (ψ0,n, π)] + βn
∂

∂β̃
Eγ̃n [mψ

t (ψ0,n, π)].

Further, add and subtract εtεt−h, and observe

rψ,nt (h, π) =
εtεt−h − E[εtεt−h]

E[ε2
t ]

−
D(h, π)′H−1(π; γ0)

(
mψ
t (ψ0,n, π)− Eγn [mψ

t (ψ0,n, π)]
)

E[ε2
t ]

+
εt(ψ0,n, π)εt−h(ψ0,n, π)− εtεt−h

E[ε2
t ]

−
D(h, π)′H−1(π; γ0)

(
βn

∂
∂β̃
Eγ̃n [mψ

t (ψ0,n, π)]
)

E[ε2
t ]

= r1,ψ,n
t (h, π) + r2,ψ,n

t (h, π)

where r1,ψ,n
t (h, π) = εtεt−h−E[εtεt−h]

E[ε2t ]
− D(h,π)′H−1(π;γ0)

(
mψt (ψ0,n,π)−Eγn [mψt (ψ0,n,π)]

)
E[ε2t ]

and r2,ψ,n
t (h, π) =

εt(ψ0,n,π)εt−h(ψ0,n,π)−εtεt−h
E[ε2t ]

−
D(h,π)′H−1(π;γ0)

(
βn

∂
∂β̃
Eγ̃n [mψt (ψ0,n,π)]

)
E[ε2t ]

.

For i = 1, 2, define zi,ψ,nt (h, π) = ri,ψ,nt (h, π)− ρ(h)ri,ψ,nt (0, π), and observe that zψ,nt (h, π) =

z1,ψ,n
t (h, π) + z2,ψ,n

t (h, π).
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Now define Z i,ψn (h, π) = 1√
n

∑n
t=1+h z

i,ψ,n
t (h, π) for i = 1, 2. We show that Z1,ψ

n (h, π) con-

verges weakly to a Gaussian process and Z2,ψ
n (h, π) converges uniformly in probability to a mean

component.

Let L, K ∈ N be arbitrary, and take [λh]
L
h=1 = λ ∈ RL and a ∈ RK with λ′λ = 1 and a′a = 1.

Take {π1, . . . , πK} ∈ Π⊗K , and observe

L∑
h=1

K∑
k=1

λhakZ1,ψ
n (h, πk) =

1√
n

L∑
h=1

K∑
k=1

λhak

n∑
t=1+h

z1,ψ,n
t (h, πk)

=
1√
n

L∑
h=1

K∑
k=1

λhak

n∑
t=1

z1,ψ,n
t (h, πk)1(1 + h ≤ t ≤ n)

=
1√
n

n∑
t=1

L∑
h=1

K∑
k=1

λhakz
1,ψ,n
t (h, πk)1(1 + h ≤ t ≤ n)

=
1√
n

n∑
t=1

(λ⊗ a)′z1,ψ,n
t,L,K

where z1,ψ,n
t,L,K = [z1,ψ,n

t (h, πk)1(1 + h ≤ t ≤ n)] h=1,...,L
k=1,...,K

. Next, define the quantity

σ2(λ, a) = E
(∑L

h=1

∑K
k=1 λhakZ1,ψ

n (h, πk)
)2. We must show 1√

n

∑n
t=1(λ ⊗ a)′z1,ψ,n

t,L,K
d−→

N(0, limn→∞ σ
2(λ, a)). Then finite dimensional convergence follows from the Cramér-Wold the-

orem.

Next, by Theorems 17.8 and 17.9 in Davidson (1994), (λ ⊗ a)′z1,ψ,n
t,L,K is mean zero, station-

ary, Lp-bounded for some p > 2, and L2-NED with size −1/2 on an α-mixing base with decay

rate O(h−p/(p−2)−ι). Thus, σ2
n(λ, a) = O(1) by McLeish (1975), and 1√

n

∑n
t=1(λ ⊗ a)′z1,ψ,n

t,L,K
d−→

N(0, limn→∞ σ
2(λ, a)) by Theorem 2 in de Jong (1997). This established finite dimensional con-

vergence.

Next, we show uniform convergence in probability of Z2,ψ
n (h, πk). Then we show stochastic

equicontinuity of Zψn (h, πk).

RecallZ2,ψ
n (h, π) = 1√

n

∑n
t=1+h z

2,ψ,n
t (h, π), z2,ψ,n

t (h, π) = r2,ψ,n
t (h, π)−ρ(h)r2,ψ,n

t (0, π), and

r2,ψ,n
t (h, π) = εt(ψ0,n,π)εt−h(ψ0,n,π)−εtεt−h

E[ε2t ]
−
D(h,π)′H−1(π;γ0)

(
βn

∂
∂β̃
Eγ̃n [mψt (ψ0,n,π)]

)
E[ε2t ]

. It is sufficient then,

110



www.manaraa.com

to show uniform convergence in probability of 1√
n

∑n
t=1+h r

2,ψ,n
t (h, π) for all h ≥ 0. Observe

1√
n

n∑
t=1+h

r2,ψ,n
t (h, π)

=
1√
n

n∑
t=1+h

(
εt(ψ0,n, π)εt−h(ψ0,n, π)− εtεt−h

E[ε2
t ]

−
D(h, π)′H−1(π; γ0)

(
βn

∂
∂β̃
Eγ̃n [mψ

t (ψ0,n, π)]
)

E[ε2
t ]

)

=

√
n

n

n∑
t=1+h

εt(ψ0,n, π)εt−h(ψ0,n, π)− εtεt−h
E[ε2

t ]

−
D(h, π)′H−1(π; γ0)

(√
nβn

1
n

∑n
t=1+h

∂
∂β̃
Eγ̃n [mψ

t (ψ0,n, π)]
)

E[ε2
t ]

Consider the first term and h ≥ 1 (h = 0 follows similarly).

√
n

n

n∑
t=1+h

(εt(ψ0,n, π)εt−h(ψ0,n, π)− εtεt−h)

=

√
n

n

n∑
t=1

(εt(ψ0,n, π)εt−h(ψ0,n, π)− εtεt−h)−
√
n

n

h∑
t=1

(εt(ψ0,n, π)εt−h(ψ0,n, π)− εtεt−h)

p−→ lim
n→∞

√
nEγn [εt(ψ0,n, π)εt−h(ψ0,n, π)− εtεt−h]

since εt(ψ0,n, π) does not depend on π and lim supn→∞
√
nEγn [εt(ψ0,n, π)εt−h(ψ0,n, π)−εtεt−h] =

O(1) from Assumption 9 and Assumption 8.

Next, observe that for the second term

D(h, π)′H−1(π; γ0)
√
nβn

1

n

n∑
t=1+h

∂

∂β̃
Eγ̃n [mψ

t (ψ0,n, π)]

= D(h, π)′H−1(π; γ0)
√
nβnKn(ψ0,n, π; γ̃n) + o(1).

Then
√
nβn → b and Kn(ψ0,n, π; γ̃n)

p−→ Kn(ψ0, π; γ0) uniformly on Π (Assumption 1). This

establishes uniform convergence in probability of Z2,ψ
n (h, πk) on Π.

To establish stochastic equicontinuity of Zψn (h, π), first observe that {1, . . . ,L} is compact.
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Next, recall εt(ψ0,n, π)εt−h(ψ0,n, π) does not depend on π under Assumption 3. Further, Ĥn(π; γn),

K̂n(π; γ̃n), and D̂n(h, π) each converge uniformly in probability to the respective limits H(π; γ0),

K(π; γ0), and D(h, π). Thus, in order to establish stochastic equicontinuity of Zψn (h, π), we only

need stochastic equicontinuity of mψ
t (ψ0,n, π), which is ensured by Assumption 4, and to invoke

probability sub-additivity. This establishes A.3.

Now in order to show A.4, we only need to show joint convergence of Zψn (h, π) and π̂n. The

latter joint convergence occurs because π̂n can be written as a continuous function of Hn(π; γn),

Kn(ψ0,n, π; γ̃n), and Gn(ψ0,n, π; γn).1

Finally, A.4 implies Zψn (h, π̂n)−Zψ(h, π∗(b, γ0)) = op(1) for each h. The result follows from

(Hill and Motegi, 2018, Lemma A.2).

(b) Recall zθt (h) = rθt (h)− ρ(h)rθt (0) where

rθt (h) =
εtεt−h − E[εtεt−h]− (Dθ(h))′J−1(γ0)mθ

t

E[ε2
t ]

We prove for each L ∈ N

{Zθn(h) : 1 ≤ h ≤ L} d−→ {Zθ(h) : 1 ≤ h ≤ L} (A.5)

where {Zθ(h) : h ∈ N} is a zero mean Gaussian process with variance

lim
n→∞

1
n

∑n
s,t=1E[zθs(h)zθt (h)] < ∞ and covariance kernel lim

n→∞
1
n

∑n
s,t=1E[zθs(h)zθt (h̃)]. Let

L, K ∈ N be arbitrary, and take [λh]
L
h=1 = λ ∈ RL with λ′λ = 1. Observe

L∑
h=1

λhZθn(h) =
1√
n

L∑
h=1

λh

n∑
t=1+h

zθt (h)

=
1√
n

L∑
h=1

λh

n∑
t=1

zθt (h)1(1 + h ≤ t ≤ n)

=
1√
n

n∑
t=1

L∑
h=1

λhz
θ
t (h)1(1 + h ≤ t ≤ n) =

1√
n

n∑
t=1

λ′zθt,L

1See Andrews and Cheng (2012b), proof of theorem 3.1, page 25.
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where zθt,L = [zθt (h)1(1 + h ≤ t ≤ n)]h=1,...,L. Define σ2(λ) = E
(∑L

h=1 λhZθn(h)
)2. We show

1√
n

∑n
t=1 λ

′zθt,L
d−→ N(0, limn→∞ σ

2(λ)). Then A.5 follows from the Cramér-Wold theorem.

Next, by Theorems 17.8 and 17.9 in Davidson (1994), (λ ⊗ a)′zψ,nt,L,K is mean zero, station-

ary, Lp-bounded for some p > 2, and L2-NED with size −1/2 on an α-mixing base with de-

cay rate O(h−p/(p−2)−ι). Thus, σ2
n(λ) = O(1) by McLeish (1975), and 1√

n

∑n
t=1 λ

′zψ,nt,L,K
d−→

N(0, limn→∞ σ
2(λ)) by Theorem 2 in de Jong (1997).

Finally, A.5 implies Zθn(h) − Zθ(h) = op(1) for each h, so the result follows from (Hill and

Motegi, 2018, Lemma A.2).

A.1.3 Proof of Theorem 2.4.1

Theorem. 2.4.1. Let Assumptions 1 - 11 hold, and let the number of bootstrap samples Mn →∞.

(a) Under {γn} ∈ Γ(γ0, 0, b) with ||b|| < ∞, there is a non-unique sequence of positive integers

{Ln} with Ln →∞ and Ln = o(n) such that |ĉ(w)
1−α,n − cn,1−α|

p−→ 0.

(b) Under {γn} ∈ Γ(γ0,∞, ω0), there is a non-unique sequence of positive integers {Ln} with

Ln →∞ and Ln = o(n) such that |ĉ(s)
1−α,n − cn,1−α|

p−→ 0.

Moreover, under the alternative hypothesis, P (T̂n > ĉ
(k)
1−α,n)→ 1 for k = w, s.

Proof. Since it is considerably shorter, we first prove the claim for case (b), strong identification.

The proof follows the proof of Theorem 2.5 in Hill and Motegi (2018) very closely. We rely on the

notion of weak convergence in probability, written⇒p, on the space of bounded functions, l∞, as

defined in Giné and Zinn (1990).

(b) Strong Identification. Let {γn} ∈ Γ(γ0,∞, ω0). Define the sampleWn ≡ {mt, xt, yt}nt=1.

We prove the following two steps:

{
√
nρ̂(s)

n (h) : 1 ≤ h ≤ L} ⇒p {
◦
Z (h) : 1 ≤ h ≤ L} (A.6)

for each L ∈ N, where {
◦
Z (h) : h ∈ N} is an independent copy of {Zθ(h) : h ∈ N}, the zero

mean Gaussian process in Lemma 3.2. For the process {
◦
Z (h) : 1 ≤ h ≤ L} and some sequence
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of positive integers {Ln}, Ln →∞ and Ln = o(n),

sup
c>0

∣∣∣P ( max
1≤h≤Ln

|
√
nρ̂(s)

n (h)| ≤ c|Xn)− P ( max
1≤h≤Ln

|
◦
Z (h)| ≤ c)

∣∣∣ p−→ 0 (A.7)

Let {zt}nt=1 be a draw of the auxiliary variables, and recall

Êt,h(θ) = εt(θ)εt−h(θ)− (B(β̂n)−1D̂θn(h, θ))′(Ĵn(θ̂n))−1mθ
t (θ)

ρ̂(s)
n (h) =

1

n−1
∑n

t=1 ε
2
t (θ̂n)

×

{
1

n

n∑
t=1+h

zt

(
Êt,h(θ̂n)− 1

n

n∑
t=1+h

Êt,h(θ̂n)
)}

.

Define

ρ∗n(h) =
1

E(ε2
t )
×

{
1

n

n∑
t=1+h

zt

(
Et,h − E(Et,h)

)}

Et,h = εtεt−h −Dθ(h)′J−1mθ
t .

We prove A.6 with the following two steps:

{
√
nρ∗n(h) : 1 ≤ h ≤ L} ⇒p {

◦
Z (h) : 1 ≤ h ≤ L} (A.8)

√
n|ρ̂(s)

n (h)− ρ∗n(h)| p−→ 0 for each h (A.9)

where {
◦
Z (h) : h ∈ N} is an independent copy of {Zθ(h) : h ∈ N}.

In the general case, Shao (2011a) requires the sub-auxiliary variables {ξt}n/bnt=1 , which are used

to construct the auxiliary variables zt, to be iid and satisfy E(ξt) = 0, E(ξ2
t ) = 1, and E(ξ4

t ) <

∞. Following Hill and Motegi (2018), we shorten the proof by letting ξt be iid N(0, 1) random

variables, which eliminates the extra steps needed to show asymptotic convergence in conditional

distribution.

In order to prove A.8, we prove weak convergence in the sense of Hoffmann-Jorgensen (1984,

1991). This requires a totally bounded pseudo metric space, finite dimensional convergence, and

stochastic equicontinuity. The proof of this step follows exactly the proof of Lemma A.3, step 1 in
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Hill and Motegi (2018).

Observe that {1, . . . ,L} is compact, so the space {1, . . . ,L} with the sup-norm is totally

bounded. The distributions governing {
√
nρ∗n(h) : n ≥ 1} are stochastically equicontinuous

on {1, . . . ,L} because the latter is discrete and bounded. Finally, we prove finite dimensional

distributions in the following.

We operate conditionally on the sampleWn. Write

ρ∗n(h) =
1

E(ε2
t )
× 1

n/bn

n/bn∑
s=1

ξs

{
1

bn

sbn∑
t=(s−1)bn+1+h

(
Et,h − E(Et,h)

)}

By joint Gaussianity and independence of ξs, {
√
nρ∗n(h) : 1 ≤ h ≤ L} is a zero mean Gaussian

process with covariance function

nE(ρ∗n(h)ρ∗n(h̃)|Wn)

=
1(

E(ε2
t )
)2 ×

1

n

n/bn∑
s=1

{
sbn∑

t=(s−1)bn+1+h

(
Et,h − E(Et,h)

)}{ sbn∑
t=(s−1)bn+1+h̃

(
Et,h̃ − E(Et,h̃)

)}

for each L ∈ N. Observe

lim
n→∞

E
[
nE(ρ∗n(h)ρ∗n(h̃)|Wn)

]
=

1(
E(ε2

t )
)2 × lim

n→∞

1

n

n/bn∑
s=1

sbn∑
t=(s−1)bn+1+h

sbn∑
u=(s−1)bn+1+h

E
[(
Et,h − E(Et,h)

)(
Eu,h̃ − E(Eu,h̃)

)]

= lim
n→∞

1

n
E

[
n∑
t=1

(Et,h − E(Et,h)
E(ε2

t )

) n∑
t=1

(Et,h̃ − E(Et,h̃)
E(ε2

t )

)]

= E[Zθ(h)Zθ(h̃)]

where the final equality follows from the definition of Z(h) in Lemma A.1.2.

LetW be the set of samples such that

nE(ρ∗n(h)ρ∗n(h̃)|Wn)
p−→ E[Zθ(h)Zθ(h̃)].
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We will show that P (Wn ∈ W) = 1. This will show that the finite dimensional distributions of

{
√
nρ∗n(h) : 1 ≤ h ≤ L} converge to the zero mean Gaussian process {

◦
Z (h) : 1 ≤ h ≤ L} with

covariance function E[Zθ(h)Zθ(h̃)], where the independence of the ξs and Gaussianity imply that

{
◦
Z (h) : 1 ≤ h ≤ L} is an independent copy of {Zθ(h) : 1 ≤ h ≤ L}.

The following step in this argument follows verbatim from the proof of Lemma A.3(a), step

1, in Hill and Motegi (2018), which utilizes arguments presented in de Jong (1997), specifically

Theorem 2. Let {ln} be a sequence of integers with ln ∈ {1, . . . , bn} such that ln → ∞ and

ln = o(bn). Define

R(h) = −
h∑
t=1

[
Et,h − E(Et,h)

]
Un,s(h) =

(s−1)bn+ln∑
t=(s−1)bn+1

[
Et,h − E(Et,h)

]
Yn,s(h) =

sbn∑
t=(s−1)bn+ln+1

[
Et,h − E(Et,h)

]

Observe that for h < ln,
∑sbn

t=(s−1)bn+1+h

[
Et,h−E(Et,h)

]
= Yn,s(h)+Un,s(h)+R(h) by construc-

tion. This implies

1

n

n/bn∑
s=1

{
sbn∑

t=(s−1)bn+1+h

(
Et,h − E(Et,h)

)}{ sbn∑
t=(s−1)bn+1+h̃

(
Et,h̃ − E(Et,h̃)

)}

=
1

n

n/bn∑
s=1

{
Yn,s(h) + Un,s(h) +R(h)

}{
Yn,s(h̃) + Un,s(h̃) +R(h̃))

)}

=
1

n

n/bn∑
s=1

Yn,s(h)Yn,s(h̃) +
1

n

n/bn∑
s=1

Un,s(h)Un,s(h̃) +
1

n

n/bn∑
s=1

Rn,s(h)Rn,s(h̃)

+
1

n

n/bn∑
s=1

Yn,s(h)Un,s(h̃) +
1

n

n/bn∑
s=1

Yn,s(h)Rn,s(h̃) +
1

n

n/bn∑
s=1

Un,s(h)Yn,s(h̃)

+
1

n

n/bn∑
s=1

Un,s(h)Rn,s(h̃) +
1

n

n/bn∑
s=1

Rn,s(h)Yn,s(h̃) +
1

n

n/bn∑
s=1

Rn,s(h)Un,s(h̃).
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We prove

1

n

n/bn∑
s=1

{
sbn∑

t=(s−1)bn+1+h

(
Et,h − E(Et,h)

)}{ sbn∑
t=(s−1)bn+1+h̃

(
Et,h̃ − E(Et,h̃)

)}

=
1

n

n/bn∑
s=1

Yn,s(h)Yn,s(h̃) + op(1). (A.10)

Observe that 1
n

∑n/bn
s=1 Rn,s(h)Rn,s(h̃) = 1

n/bn

∑n/bn
s=1

1
bn
Rn,s(h)Rn,s(h̃) = 1

bn
Rn,s(h)Rn,s(h̃).

Under Assumptions 7, 4, and 8, Et,h is stationary, ergodic, and L2-bounded. Therefore

E
∣∣∣∣∣∣ 1

bn
Rn,s(h)Rn,s(h̃)

∣∣∣∣∣∣ ≤ K/bn → 0.

Next, the NED properties and moment bounds of εt and mθ
t in Assumptions 7, 4, and 8 imply

that Et,h = εtεt−h − Dθ(h)′J−1mθ
t is stationary, Lp-bounded for some p > 2, and L2-NED on an

α-mixing base with decay rate O(h−p/(p−2)). Then ||(1/
√
bn)Yn,1(h)||2 and ||(1/

√
ln)Un,1(h)||2

are O(1) by McLeish (1975), Theorem 1.6. Observe

∣∣∣∣∣
∣∣∣∣∣ 1n

n/bn∑
s=1

Yn,s(h)Un,s(h̃)

∣∣∣∣∣
∣∣∣∣∣
1

=

∣∣∣∣∣
∣∣∣∣∣ 1

n/bn

n/bn∑
s=1

ln
bn
Yn,s(h)

1

ln
Un,s(h̃)

∣∣∣∣∣
∣∣∣∣∣
1

=

∣∣∣∣∣
∣∣∣∣∣ 1

n/bn

n/bn∑
s=1

(
ln
bn

)1/2
1√
bn
Yn,s(h)

1√
ln
Un,s(h̃)

∣∣∣∣∣
∣∣∣∣∣
1

≤ 1

n/bn

n/bn∑
s=1

∣∣∣∣∣
∣∣∣∣∣
(
ln
bn

)1/2
1√
bn
Yn,s(h)

1√
ln
Un,s(h̃)

∣∣∣∣∣
∣∣∣∣∣
1

≤ 1

n/bn

n/bn∑
s=1

(
ln
bn

)1/2∣∣∣∣∣
∣∣∣∣∣ 1√
bn
Yn,s(h)

∣∣∣∣∣
∣∣∣∣∣
2

∣∣∣∣∣
∣∣∣∣∣ 1√
ln
Un,s(h̃)

∣∣∣∣∣
∣∣∣∣∣
2

=

(
ln
bn

)1/2∣∣∣∣∣
∣∣∣∣∣ 1√
bn
Yn,1(h)

∣∣∣∣∣
∣∣∣∣∣
2

∣∣∣∣∣
∣∣∣∣∣ 1√
ln
Un,1(h̃)

∣∣∣∣∣
∣∣∣∣∣
2

= O

((
ln
bn

)1/2)
= o(1)

by stationarity, Minkowski’s inequality, and the Cauchy-Schwartz inequality. The remaining terms
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are shown to be o(1) in a similar fashion. This proves A.10.

Finally, by the NED property, we see by the proof of de Jong’s (1997) Theorem 2 that

1

n

n/bn∑
s=1

Yn,s(h)Yn,s(h̃)
p−→ lim

n→∞

1

n
E

[{
n∑
t=1

(
Et,h − E(Et,h)

)}{ n∑
t=1

(
Et,h̃ − E(Et,h̃)

)}]
.

Combine this with A.10 to see that

nE(ρ∗n(h)ρ∗n(h̃)|Wn)
p−→ lim

n→∞
E[nE(ρ∗n(h)ρ∗n(h̃)|Wn)] = E[Zθ(h)Zθ(h̃)],

so that P (Wn ∈ W) = 1 as desired.

Now consider A.9. Recall Êt,h(θ̂n) = εt(θ̂n)εt−h(θ̂n)− (B(β̂n)−1D̂θn(h, θ̂n))′(Ĵn(θ̂n))−1mθ
t (θ̂n)

and Et,h = εtεt−h −Dθ(h)′J−1mθ
t .

Observe that by the construction of zt for ξs iid N(0, 1),

E
[( 1√

n

n∑
t=1+h

zt
(
Et,h − E(Et,h)

))2]
= E

[( 1√
n

n/bn∑
s=1

ξs

sbn∑
t=(s−1)bn+1

(
Et,h − E(Et,h)

))2]

= E
[( 1√

bn

bn∑
t=1

(
Et,h − E(Et,h)

))2]
.

Then Under Assumptions ..., Et,h − E(Et,h) is zero mean, stationary, Lp-bounded for some p > 2,

and L2-NED with size −1/2 on an α-mixing base with decay rate O(h−p/(p−2)−ι) by Theorems

17.8 and 17.9 in Davidson (1994). Hence the term above is O(1), so that 1√
bn

∑bn
t=1

(
Et,h −

E(Et,h)
)

= Op(1). Further, Lemma A.2.3 implies that 1
n

∑n
t=1 ε

2
t (θ̂n)

p−→ E(ε2
t ).

We will next prove

1√
n

n∑
t=1+h

zt

(
Êt,h(θ̂n)− 1

n

n∑
s=1+h

Êt,h(θ̂n)
)

=
1√
n

n∑
t=1+h

zt
(
Et,h − E(Et,h)

)
+ op(1) (A.11)

which coupled with the previous arguments give

√
nρ̂(s)

n (h) =
1

n−1
∑n

t=1 ε
2
t (θ̂n)

×

{
1

n

n∑
t=1+h

zt

(
Êt,h(θ̂n)− 1

n

n∑
t=1+h

Êt,h(θ̂n)
)}
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=
1

E(ε2
t )
×

{
1

n

n∑
t=1+h

zt

(
Et,h − E(Et,h)

)}
+ op(1)

In order to prove A.11, we must show the following steps:

1√
n

n∑
t=1+h

ztεt(θ̂n)εt−h(θ̂n) =
1√
n

n∑
t=1+h

ztεtεt−h + op(1) (A.12)

(B−1(β̂n)D̂θn(h, θ̂n))′Ĵ−1
n (θ̂n)

1√
n

n∑
t=1+h

ztm
θ
t (θ̂n) = Dθ(h)′J−1 1√

n

n∑
t=1+h

ztm
θ
t + op(1)

(A.13)

1√
n

n∑
t=1+h

zt
1

n

n∑
s=1+h

εs(θ̂n)εs−h(θ̂n) =
1√
n

n∑
t=1+h

ztE(εtεt−h) + op(1) (A.14)

1√
n

n∑
t=1+h

zt(B
−1(β̂n)D̂θn(h, θ̂n))′Ĵ−1

n (θ̂n)
1

n

n∑
s=1+h

mθ
s(θ̂n) = op(1) (A.15)

Since zt is a mean zero Gaussian random variable that is independent of the sample, the proof

of Lemma A.2.4 applies to show

1√
n

n∑
t=1+h

ztεt(θ̂n)εt−h(θ̂n)

=
1√
n

n∑
t=1+h

ztεtεt−h −
√
n(θ̂n − θn)′

1

n

n∑
t=1+h

zt[dθ,tεt−h + dθ,t−hεt] + op(1)

Next, observe

1

n

n∑
t=1+h

zt[dθ,tεt−h] =
1

n

n∑
t=1

zt[dθ,tεt−h] + op(1)

=
1

n

n/bn∑
s=1

ξs

sbn∑
t=(s−1)bn+1

[dθ,tεt−h] + op(1)

by the moment bounds and the construction of zt. Recall ξs is iid, independent of the sample, and
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has zero mean and unit variance. Then stationarity, and the moment bounds imply

E
[( 1

n

n/bn∑
s=1

ξs

sbn∑
t=(s−1)bn+1

[dθ,tεt−h]
)2]

=
bn
n
E
[( 1

bn

bn∑
t=1

[dθ,tεt−h]
)2]

≤ bn
n
E
[
[dθ,tεt−h]

2
]

= o(1)

because bn = o(n). Now apply Chebyshev’s inequality to see

P (
1

n

n∑
t=1+h

zt[dθ,tεt−h] > η) ≤ bn
n
E
[
[dθ,tεt−h]

2
]
/η2 → 0,

so that 1
n

∑n
t=1+h zt[dθ,tεt−h]

p−→ 0. Then
√
n(θ̂n − θn) = Op(1) implies that

√
n(θ̂n − θn)′

1

n

n∑
t=1+h

zt[dθ,tεt−h + dθ,t−hεt] = op(1),

so A.12 holds.

Next, consider A.13, and write

(B−1(β̂n)D̂θn(h, θ̂n))′Ĵ−1
n (θ̂n)

1√
n

n∑
t=1+h

ztm
θ
t (θ̂n)

= Dθ(h)′J−1 1√
n

n∑
t=1+h

ztm
θ
t

+Dθ(h)′J−1 1√
n

n∑
t=1+h

zt
(
mθ
t (θ̂n)−mθ

t

)
+
(

(B−1(β̂n)D̂θn(h, θ̂n))′Ĵ−1
n (θ̂n)−Dθ(h)′J−1

) 1√
n

n∑
t=1+h

ztm
θ
t

+
(

(B−1(β̂n)D̂θn(h, θ̂n))′Ĵ−1
n (θ̂n)−Dθ(h)′J−1

) 1√
n

n∑
t=1+h

zt
(
mθ
t (θ̂n)−mθ

t

)
.

Recall that B−1(β̂n)D̂θn(h, θ̂n)
p−→ Dθ(h) by Lemma A.2.5, and Ĵ−1

n (θ̂n)
p−→ J−1 by assumption;

hence (B−1(β̂n)D̂θn(h, θ̂n))′Ĵ−1
n (θ̂n)−Dθ(h)′J−1 = op(1). Next, observe that 1√

n

∑n
t=1+h ztm

θ
t =

Op(1) by the moment bounds, the NED property, McLeish (1975), and Chebyshev’s inequality.
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Finally, observe

|| 1√
n

n∑
t=1+h

zt
(
mθ
t (θ̂n)−mθ

t

)
|| ≤ sup

θ∗∈Θ
|| 1√

n

n∑
t=1+h

zt
∂

∂θ
mθ
t (θ
∗)|| × ||θ̂n − θn||

by the mean value theorem. Since ||θ̂n − θn|| = Op(1/
√
n), it remains to show that

supθ∗∈Θ || 1√
n

∑n
t=1+h zt

∂
∂θ
mθ
t (θ
∗)|| = op(

√
n), which is shown in Lemma A.2.1 in the Appendix.

Next, we prove A.14. First, observe

1√
n

n∑
t=1

zt =

√
bn√
n/bn

n/bn∑
t=1

ξt = Op(
√
bn).

Now from the proof of Lemma A.2.3, we have that 1
n

∑n
s=1+h εs(θ̂n)εs−h(θ̂n) =

1
n

∑n
s=1+h εsεs−h +Op(1/

√
n). Hence

1√
n

n∑
t=1

zt
1

n

n∑
s=1+h

εs(θ̂n)εs−h(θ̂n) =

√
bn√
n/bn

n/bn∑
t=1

ξt

( 1

n

n∑
s=1+h

εsεs−h +Op(1/
√
n)
)

=

√
bn√
n/bn

n/bn∑
t=1

ξt
1

n

n∑
s=1+h

εsεs−h +Op(
√
bn/
√
n)

=
1√
n

n∑
t=1

zt
1

n

n∑
s=1+h

εsεs−h +Op(1/
√
n/bn)

Now, εtεt−h − E(εtεt−h) is zero mean, stationary, Lp-bounded for some p > 2, and L2-

NED with size −1/2 on an α-mixing base with decay rate O(h−p/(p−2)−ι) by Theorems 17.8 and

17.9 in Davidson (1994). Then by Theorem 1.6 in McLeish (1975), E(( 1√
n

∑n
s=1+h(εsεs−h −

E(εsεs−h)))
2) = O(1). Thus 1√

n

∑n
s=1+h(εsεs−h − E(εsεs−h)) = Op(1), so

1√
n

n∑
t=1

zt
1

n

n∑
s=1+h

(εsεs−h − E(εsεs−h))

=
1√
n

n∑
t=1

zt ×Op(1/
√
n) = Op(1/

√
n/bn) = op(1).

Finally, we prove A.15. Recall 1√
n

∑n
t=1 zt = Op(

√
bn) and (B−1(β̂n)D̂θn(h, θ̂n))′Ĵ−1

n (θ̂n)
p−→
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Dθ(h)′J−1. It is therefore sufficient to show 1
n

∑n
t=1m

θ
t (θ̂n) = op(1/

√
bn). Observe that

|| 1
n

n∑
t=1+h

mθ
t (θ̂n)− 1

n

n∑
t=1+h

mθ
t || ≤ sup

θ∗∈Θ
|| 1
n

n∑
t=1+h

∂

∂θ
mθ
t (θ
∗)|| × ||θ̂n − θn||

by the mean value theorem. Now, ||θ̂n − θn|| = Op(1/
√
n), and {mt} is zero mean, station-

ary, Lp-bounded for some p > 2, and L2-NED with size −1/2 on an α-mixing base with decay

rate O(h−p/(p−2)−ι), so E[( 1√
n

∑n
t=1m

θ
t )

2] = O(1) by McLeish (1975), Theorem 1.6. Hence,

1√
n

∑n
t=1m

θ
t = Op(1), and 1

n

∑n
t=1+hm

θ
t = Op(1/

√
n). Since, bn = o(n), we have that

O( 1√
n
) = O(

√
bn√
n

1√
bn

) = o( 1√
bn

). Thus 1
n

∑n
t=1+hm

θ
t = op(1/

√
bn). We need only show that

supθ∗∈Θ || 1n
∑n

t=1+h
∂
∂θ
mθ
t (θ
∗)|| = Op(1), which follows from Lemma A.2.1.

This completes the proof of A.6, so that

{
√
nρ̂(s)

n (h) : 1 ≤ h ≤ L} ⇒p {
◦
Z (h) : 1 ≤ h ≤ L}

for each L ∈ N, where {
◦
Z (h) : h ∈ N} is an independent copy of {Zθ(h) : h ∈ N}, the zero

mean Gaussian process in Lemma 3.2.

Now we prove A.7: For the process {
◦
Z (h) : 1 ≤ h ≤ L} and some sequence of positive

integers {Ln}, Ln →∞ and Ln = o(n),

AL,n ≡ sup
c>0

∣∣∣P ( max
1≤h≤Ln

|
√
nρ̂(s)

n (h)| ≤ c|Wn)− P ( max
1≤h≤Ln

|
◦
Z (h)| ≤ c)

∣∣∣ p−→ 0.

Pair A.6 with the continuous mapping theorem to yield

{ max
1≤h≤Ln

|
√
nρ̂(s)

n (h)| : 1 ≤ h ≤ L} ⇒p { max
1≤h≤Ln

|
◦
Z (h)| : 1 ≤ h ≤ L}

for each L ∈ N. This implies

sup
c>0

∣∣∣P ( max
1≤h≤L

|
√
nρ̂(s)

n (h)| ≤ c|Wn)− P ( max
1≤h≤L

|
◦
Z (h)| ≤ c)

∣∣∣ p−→ 0.
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(see Giné and Zinn (1990), page 862.) In order to prove A.7, ALn,n
p−→ 0 for some {Ln : n ≥ 1},

Ln →∞ with Ln = o(n), we follow the proof of Lemma A.2(a) in Hill and Motegi (2018).

The dominated convergence theorem implies

lim
n→∞

∫ 1

0

P (AL,n > η)dη =

∫ 1

0

lim
n→∞

P (AL,n > η)dη = 0,

so by Lemma A.1 in Hill and Motegi (2018), we have
∫ 1

0
P (ALn,n > η)dη = E(ALn,n) → 0

for some non-unique sequence of integers {Ln : n ≥ 1}, Ln → ∞ with Ln = o(n). Then by

Markov’s inequality, P (ALn,n > η) ≤ E(ALn,n)/η → 0 for all η > 0. HenceALn,n
p−→ 0 for some

non-unique sequence of integers {Ln : n ≥ 1}, Ln →∞ with Ln = o(n).

Step 3. Finally, we show the consistency of the critical values. Define the quantile functions

F̂−1
n (u|·) = inf{c ≥ 0 : P (T̂ (s)

n ≤ c|·) ≥ u}, F−1
n (u) = inf{c ≥ 0 : P (T̂n ≤ c) ≥ u}.

Operate conditionally on the sampleWn. From A.7, {T̂ (s)
n,j }Mj=1 is a sequence of iid draws from

max1≤h≤Ln |
◦
Z (h)| asymptotically with probability approaching one with respect to the sample

Wn. Thus under {γn} ∈ Γ(γ0,∞, ω0), T̂n and T̂ (s)
n have the same limits under H0. Hence, under

H0,

sup
c>0

∣∣∣P (T̂ (s)
n ≤ c|Wn)− P (T̂n ≤ c)

∣∣∣ p−→ 0.

Therefore supu∈[0,1]

∣∣∣F̂−1
n (u|Wn) − F−1

n (u)
∣∣∣ p−→ 0. Further, by independence and letting Mn →

∞, the bootstrapped critical value ĉ(s)
n,1−α,Mn

= T̂ (s)
n,[(1−α)·Mn] is a central order statistic (see e.g.

Galambos (1987)) of a conditionally iid random variable, so
∣∣∣ĉ(s)
n,1−α,Mn

− F̂−1
n (1 − α|Wn)

∣∣∣ p−→ 0.

Combining these statements yields
∣∣∣ĉ(s)
n,1−α,Mn

− F−1
n (1 − α)

∣∣∣ p−→ 0. Since cn,1−α = F−1
n (1 − α),

the proof is complete.

(a) Weak Identification. We next prove the claim under weak identification. The proof under

this case will proceed similarly to the proof under strong identification; however, the following

will require more steps due to the inconsistency of π̂n for π0 and the required bootstrap step for

calculating the bootstrapped π∗, and the joint convergence of π̂n with the other variables.
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Let {γn} ∈ Γ(γ0, 0, b) with ||b|| <∞. We will prove the following two steps:

{
√
nρ̂(w)

n (h) : 1 ≤ h ≤ L} ⇒p {
◦
Z (h, π∗(b, γ0)) : 1 ≤ h ≤ L} (A.16)

for each L ∈ N, where {
◦
Z (h, π) : h ∈ N, π ∈ Π} is an independent copy of {Zψ(h, π) : h ∈

N, π ∈ Π}, the Gaussian process in Lemma 3.2(a). Second, for the process {
◦
Z (h, π) : 1 ≤ h ≤

L, π ∈ Π} and some sequence of positive integers {Ln}, Ln →∞ and Ln = o(n),

sup
c>0

∣∣∣P ( max
1≤h≤Ln

|
√
nρ̂(w)

n (h)| ≤ c|Wn)− P ( max
1≤h≤Ln

|
◦
Z (h, π∗(b, γ0))| ≤ c)

∣∣∣ p−→ 0. (A.17)

We prove A.16 in the following several steps: First, we prove

{Ĝ(bs)
n (π) : π ∈ Π} ⇒p {G(π; γ0) : π ∈ Π} (A.18)

where G(π; γ0) is the mean zero Gaussian process, with covariance kernel Ω(π, π̃; γ0), that is the

weak limit of Gn(·) under weak identification. Together with uniform convergence in probability

of Hn(ψ̂0,n, π) to H(π; γ0) and Kn(ψ̃n, π; γ̃n) to K(ψ0, π; γ0), this step will imply {ξ(bs)
n (π; γ0, b) :

π ∈ Π} ⇒p {ξ(π; b, γ0) : π ∈ Π}. Then the argmax continuity theorem (cf van der Vaart and

Wellner (1996), Lemma 3.2.1 and Andrews and Cheng (2012b), Theorem 9.10.) will yield

π∗(bs)(γ0, b)
d−→ π∗(γ0, b). (A.19)

Next, we will prove the weak convergence result

{
√
nρ̂(w)

n (h, π) : 1 ≤ h ≤ L, π ∈ Π} ⇒p {
◦
Z (h, π) : 1 ≤ h ≤ L, π ∈ Π} (A.20)

where ρ̂(w)
n (h, π) will be defined precisely. The proof of A.20 will follow similarly to the proof of

A.6 under strong identification. Finally, we will prove joint weak convergence

{
√
nρ̂(w)

n (h, π), π∗(bs)(b, γ0) : 1 ≤ h ≤ L, π ∈ Π}
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⇒p {
◦
Z (h, π), π∗(b, γ0) : 1 ≤ h ≤ L, π ∈ Π} (A.21)

which will follow simply from the construction of ρ̂(w)
n (h, π), the fact that π∗(bs)(b, γ0) is a continu-

ous function of Ĝ(bs)
n (π), Kn(ψ̂0,n, π; γ0), and Hn(ψ0,n, π), and the continuous mapping theorem.

The result A.16 will follow.

We now begin the proof of A.16. Let {γn} ∈ Γ(γ0, 0, b) with ||b|| <∞, and operate condition-

ally on the sampleWn ≡ {mt, xt, yt}nt=1. First, we prove A.18:

{Ĝ(bs)
n (π) : π ∈ Π} ⇒p {G(π; γ0) : π ∈ Π}

where G(π; γ0) is the mean zero Gaussian process, with covariance kernel Ω(π, π̃; γ0) =

E[G(π; γ0) G(π̃; γ0)′], that is the weak limit of Gn(·) under weak identification. We must prove

convergence in finite dimensional distributions and establish stochastic equicontinuity (see e.g.

Giné and Zinn (1990), Andrews (1994), or Pollard (1990)).

Recall Ĝ(bs)
n (π) = 1√

n

∑n
t=1 zt

(
mψ
t (ψ0,n, π)− 1

n

∑n
t=1 m

ψ
t (ψ0,n, π)

)
. We prove convergence in

finite dimensional distributions with an argument in Hansen (1996). By construction of zt, we can

write

1√
n

n∑
t=1

zt
(
mψ
t (ψ0,n, π)− 1

n

n∑
t=1

mψ
t (ψ0,n, π)

)
=

bn√
n

n/bn∑
s=1

ξs

( 1

bn

sbn∑
t=(s−1)bn+1

(
mψ
t (ψ0,n, π)− 1

n

n∑
t=1

mψ
t (ψ0,n, π)

))

=
√
n

1

n/bn

n/bn∑
s=1

ξs

( 1

bn

sbn∑
t=(s−1)bn+1

(
mψ
t (ψ0,n, π)− 1

n

n∑
t=1

mψ
t (ψ0,n, π)

))
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Then since ξt is distributed N(0, 1) and independent of the sample, Ĝ(bs)
n (π) is normally dis-

tributed with mean zero and covariance kernel

E
(
Ĝ(bs)
n (π)Ĝ(bs)

n (π̃)′|Wn

)
= E

{[
1√
n/bn

n/bn∑
s=1

ξs

( 1√
bn

sbn∑
t=(s−1)bn+1

(
mψ
t (ψ0,n, π)− 1

n

n∑
t=1

mψ
t (ψ0,n, π)

))]

×

[
1√
n/bn

n/bn∑
s=1

ξs

( 1√
bn

sbn∑
t=(s−1)bn+1

(
mψ
t (ψ0,n, π̃)− 1

n

n∑
t=1

mψ
t (ψ0,n, π̃)

))]′∣∣∣Wn

}

=

[
1

n/bn

n/bn∑
s=1

( 1√
bn

sbn∑
t=(s−1)bn+1

(
mψ
t (ψ0,n, π)− 1

n

n∑
t=1

mψ
t (ψ0,n, π)

))

×
( 1√

bn

sbn∑
u=(s−1)bn+1

(
mψ
u (ψ0,n, π̃)− 1

n

n∑
t=1

mψ
u (ψ0,n, π̃)

))′]

= Ω̂n(π, π̃)

where Ω̂n(π, π̃) is defined implicitly. LetW be the set of samples such that

sup
π,π̃∈Π×Π

||E
(
Ĝ(bs)
n (π)Ĝ(bs)

n (π̃)′|Wn

)
− Ω(π, π̃; γ0)|| p−→ 0.

We must show that supπ,π̃∈Π×Π ||Ω̂n(π, π̃) − Ω(π, π̃; γ0)|| p−→ 0 in order to prove that P (Wn ∈

W) = 1. This follows from stationarity, ergodicity and the moment bounds in Assumption 4.

Thus Ĝ(bs)
n (π) converges in finite dimensional distributions to a zero mean Gaussian process with

covariance kernel Ω(π, π̃; γ0).

Observe that under {γn} ∈ Γ(γ0, 0, b) with ||b|| < ∞ and H0, Gn(π) has the same limit by

Assumption 1. Since Gaussian processes are characterized by their first two moments, the finite

dimensional distributions of Ĝ(bs)
n (π) and Gn(π) converge to the same limit.

Next, we show stochastic equicontinuity. Let r ∈ kψ be such that r′r = 1. The mean value
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theorem yields

r′
(
mψ
t (ψ0,n, π)−mψ

t (ψ0,n, π̃)
)
≤ sup
◦
π∈Π

||r′ ∂
∂π
mψ
t (ψ0,n,

◦
π)|| × ||π̃ − π||.

Next, use the construction of zt and the fact that zt is independent of the data and Chebychev’s

inequality, and observe the following:

Pn(η) = P
(

sup
π,π̃∈Π:||π̃−π||≤δ

∣∣∣ 1√
n

n∑
t=1

ztr
′
(
mψ
t (ψ0,n, π)−mψ

t (ψ0,n, π̃)
)∣∣∣ > η|Wn

)
≤ 1

η2
E
[

sup
π,π̃∈Π:||π̃−π||≤δ

( 1√
n

n∑
t=1

ztr
′
(
mψ
t (ψ0,n, π)−mψ

t (ψ0,n, π̃)
))2

|Wn

]
=

1

η2
E
[

sup
π,π̃∈Π:||π̃−π||≤δ

( 1√
n/bn

n/bn∑
s=1

ξs
1√
bn

sbn∑
t=(s−1)bn+1

r′
(
mψ
t (ψ0,n, π)

−mψ
t (ψ0,n, π̃)

))2

|Wn

]
=

1

η2

1

n/bn

n/bn∑
s=1

sup
π,π̃∈Π:

||π̃−π||≤δ

( 1√
bn

sbn∑
t=(s−1)bn+1

r′
(
mψ
t (ψ0,n, π)−mψ

t (ψ0,n, π̃)
))

×
( 1√

bn

sbn∑
u=(s−1)bn+1

r′
(
mψ
t (ψ0,n, π)−mψ

t (ψ0,n, π̃)
))′

≤ δ2

η2

1

n/bn

n/bn∑
s=1

sup
◦
π∈Π

( 1√
bn

sbn∑
t=(s−1)bn+1

||r′ ∂
∂π
mψ
t (ψ0,n,

◦
π)||
)

×
( 1√

bn

sbn∑
u=(s−1)bn+1

||r′ ∂
∂π
mψ
t (ψ0,n,

◦
π)||
)′

=
δ2

η2

1

n/bn

n/bn∑
s=1

sup
◦
π∈Π

( 1√
bn

sbn∑
t=(s−1)bn+1

||r′ ∂
∂π
mψ
t (ψ0,n,

◦
π)||
)2

=
δ2

η2
Cn

Now observe that

E

[
1

n/bn

n/bn∑
s=1

sup
◦
π∈Π

( 1√
bn

sbn∑
t=(s−1)bn+1

||r′ ∂
∂π
mψ
t (ψ0,n,

◦
π)||
)2
]
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= E

[
sup
◦
π∈Π

( 1√
bn

bn∑
t=1

||r′ ∂
∂π
mψ
t (ψ0,n,

◦
π)||
)2
]

= O(1)

by Assumption 4. Hence stationarity and ergodicity imply that Cn
p−→ C for a finite non-negative

constant C. Take δ > 0 such that 0 < δ ≤ (εη2/C)1/2 to see that for every (ε, η) > 0, there is a

δ > 0 such that limn→∞Pn(η) < ε with probability approaching one with respect to the sample

Wn.

Next, we prove A.19. Recall supπ∈Π ||Hn(ψ̂0,n, π) − H(π; γ0)|| p−→ 0 and supπ∈Π

||Kn(ψ̃n, π; γ̃n) −K(ψ0, π; γ0)|| p−→ 0 for every pair of sequences ψ̃n → ψ0 and γ̃n → γ0. This

paired with A.18 implies {ξ(bs)
n (π; γ0, b) : π ∈ Π} ⇒p {ξ(π; b, γ0) : π ∈ Π}. The argmax continu-

ity theorem (cf van der Vaart and Wellner (1996), Lemma 3.2.1 and Andrews and Cheng (2012b),

Theorem 9.10.) then yields π∗(bs)(γ0, b)
d−→ π∗(γ0, b).

Next in order to prove A.20, we show the following two intermediate steps:

{
√
nρ∗n(h, π) : 1 ≤ h ≤ L, π ∈ Π} ⇒p {

◦
Z (h, π) : 1 ≤ h ≤ L, π ∈ Π} (A.22)

√
n sup
π∈Π
|ρ̂(w)
n (h, π)− ρ∗n(h, π)| p−→ 0 for each h (A.23)

where {
◦
Z (h, π) : h ∈ N, π ∈ Π} is an independent copy of {Zψ(h, π) : h ∈ N, π ∈ Π}.

Recall

Êt,h(ψ, π) = εt(ψ, π)εt−h(ψ, π)

− D̂n(h, π)′H−1
n (ψ, π)

(
mψ
t (ψ, π)− 1

n

n∑
t=1

mψ
t (ψ, π)

)
− 1

n

n∑
t=1+h

[εt(ψ, π)εt−h(ψ, π)− εtεt−h]

ρ̂(w)
n (h, π; γn, b) =

1

n−1
∑n

t=1 ε
2
t (θ̂n)

×

{
1

n

n∑
t=1+h

zt

(
Êt,h(ψ̂0,n, π)− 1

n

n∑
t=1+h

Êt,h(ψ̂0,n, π)
)

+
1

n

n∑
t=1+h

[εt(ψ̂0,n, π)εt−h(ψ̂0,n, π)− εtεt−h]
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− D̂n(h, π)′H−1
n (ψ̂0,n, π)× 1

n

n∑
t=1

(b/
√
n)

∂

∂β̃n
Eγ̃n(mψ

t ( ˜ψ0,n, π))

}
.

Define

Et,h(π) = εtεt−h −Dψ(h, π)′H−1(π; γ0)
(
mψ
t (ψ0,n, π)− Eγn [mψ

t (ψ0,n, π)]
)

ρ∗n(h, π) =
1

E(ε2
t )
×

{
1

n

n∑
t=1+h

zt

(
Et,h(π)− E(Et,h(π))

)
+ Eγn [εt(ψ0,n, π)εt−h(ψ0,n, π)− εtεt−h]

−Dψ(h, π)′H−1(π; γ0)(b/
√
n)K(ψ0, π; γ0)

}
.

Further, separate ρ∗n(h, π) into a mean a conditional Gaussian components

ρ∗n(h, π) = ρ1,∗
n (h, π) +ρ2,∗

n (h, π) where ρ1,∗
n (h, π) = 1

E(ε2t )
×
{

1
n

∑n
t=1+h zt

(
Et,h(π) −

E(Et,h(π))
)}

and ρ2,∗
n (h, π) = 1

E(ε2t )
×
{
Eγn [εt(ψ0,n, π)εt−h(ψ0,n, π) − εtεt−h] −

Dψ(h, π)′H−1(π; γ0)(b/
√
n)K(ψ0, π; γ0)

}
.

Here, we again shorten the proof by letting ξt be iidN(0, 1) random variables, which eliminates

the extra steps needed to show asymptotic convergence in conditional distribution. In order to

prove A.22, we prove weak convergence in the sense of Hoffmann-Jorgensen (1984, 1991). This

requires a totally bounded pseudo metric space, finite dimensional convergence, and stochastic

equicontinuity. The proof of this step closely follows the proof of Lemma A.3, step 1 in Hill and

Motegi (2018); however, it must be augmented to account for the convergence over Π.

Observe that {1, . . . ,L}×Π is compact, so this space with the sup-norm is totally bounded. In

order to prove stochastic equicontinuity, first note that {1, . . . ,L} is discrete and bounded. Next,

recall the construction of ρ∗n(h, π), that mψ
t (ψ0,n, π) is stochastically equicontinuous, and invoke

probability sub-additivity. Finally, we establish convergence of the finite dimensional distributions

with the following argument.
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We operate conditionally on the sampleWn. Write

ρ1,∗
n (h, π) =

1

E(ε2
t )
× 1

n/bn

n/bn∑
s=1

ξs

{
1

bn

sbn∑
t=(s−1)bn+1+h

(
Et,h(π)− E(Et,h(π))

)}

By joint Gaussianity and independence of ξs, {
√
nρ1,∗

n (h) : 1 ≤ h ≤ L} is a zero mean Gaussian

process with covariance function

nE(ρ1,∗
n (h, π)ρ1,∗

n (h̃, π̃)′|Wn)

=
1(

E(ε2
t )
)2 ×

1

n

n/bn∑
s=1

{
sbn∑

t=(s−1)bn+1+h

(
Et,h(π)− E(Et,h(π))

)}

×

{
sbn∑

t=(s−1)bn+1+h̃

(
Et,h̃(π̃)− E(Et,h̃(π̃))

)}′

for each L ∈ N and π, π̃ ∈ Π. Observe

lim
n→∞

E
[
nE(ρ1,∗

n (h, π)ρ1,∗
n (h̃, π̃)′|Wn)

]
=

1(
E(ε2

t )
)2 × lim

n→∞

1

n

n/bn∑
s=1

sbn∑
t=(s−1)bn+1+h

sbn∑
u=(s−1)bn+1+h

E
[(
Et,h(π)− E(Et,h(π))

)
×
(
Eu,h̃(π̃)− E(Eu,h̃(π̃))

)′]
= lim

n→∞

1

n
E

[
n∑
t=1

(Et,h(π)− E(Et,h(π))

E(ε2
t )

) n∑
t=1

(Et,h̃(π̃)− E(Et,h̃(π̃))

E(ε2
t )

)′]

= E[Z1,ψ(h, π)Z1,ψ(h̃, π̃)]

where the final equality follows from the definition of Z1,ψ(h, π) in Lemma A.1.2.

LetW be the set of samples such that

nE(ρ1,∗
n (h, π)ρ1,∗

n (h̃, π̃)|Wn)
p−→ E[Z1,ψ(h, π)Z1,ψ(h̃, π̃)].

We will show that P (Wn ∈ W) = 1. This argument is similar to the corresponding step in the
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proof under strong identification, with modifications being necessary to accommodate the uniform

convergence over Π.

Let {ln} be a sequence of integers with ln ∈ {1, . . . , bn} such that ln → ∞ and ln = o(bn).

Define

R(h, π) = −
h∑
t=1

[
Et,h(π)− E(Et,h(π))

]
Un,s(h, π) =

(s−1)bn+ln∑
t=(s−1)bn+1

[
Et,h(π)− E(Et,h(π))

]
Yn,s(h, π) =

sbn∑
t=(s−1)bn+ln+1

[
Et,h(π)− E(Et,h(π))

]

Observe that for h < ln,
∑sbn

t=(s−1)bn+1+h

[
Et,h(π)−E(Et,h(π))

]
= Yn,s(h, π)+Un,s(h, π)+R(h, π)

by construction. This implies

1

n

n/bn∑
s=1

{
sbn∑

t=(s−1)bn+1+h

(
Et,h(π)− E(Et,h(π))

)}{ sbn∑
t=(s−1)bn+1+h̃

(
Et,h̃(π̃)− E(Et,h̃(π̃))

)}

=
1

n

n/bn∑
s=1

{
Yn,s(h, π) + Un,s(h, π) +R(h, π)

}{
Yn,s(h̃, π̃) + Un,s(h̃, π̃) +R(h̃, π̃))

)}

=
1

n

n/bn∑
s=1

Yn,s(h, π)Yn,s( ˜h, π̃) +
1

n

n/bn∑
s=1

Un,s(h, π)Un,s(h̃, π̃) +
1

n

n/bn∑
s=1

Rn,s(h, π)Rn,s(h̃, π̃)

+
1

n

n/bn∑
s=1

Yn,s(h, π)Un,s(h̃, π̃) +
1

n

n/bn∑
s=1

Yn,s(h, π)Rn,s(h̃, π̃) +
1

n

n/bn∑
s=1

Un,s(h, π)Yn,s(h̃, π̃)

+
1

n

n/bn∑
s=1

Un,s(h, π)Rn,s(h̃, π̃) +
1

n

n/bn∑
s=1

Rn,s(h, π)Yn,s(h̃, π̃) +
1

n

n/bn∑
s=1

Rn,s(h, π)Un,s(h̃, π̃).

We prove

1

n

n/bn∑
s=1

{
sbn∑

t=(s−1)bn+1+h

(
Et,h(π)− E(Et,h(π))

)}{ sbn∑
t=(s−1)bn+1+h̃

(
Et,h̃(π̃)− E(Et,h̃(π̃))

)}

=
1

n

n/bn∑
s=1

Yn,s(h, π)Yn,s(h̃, π̃) + op(1). (A.24)
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for every π, π̃ ∈ Π. Stochastic equicontinuity follows from probability sub-additivity and because

Dψ(h, π), H−1(π; γ0), and mψ
t (ψ0,n, π) are each stochastically equicontinuous under Assumptions

9, 1, and 4 respectively.

Observe that

1

n

n/bn∑
s=1

Rn,s(h, π)Rn,s(h̃, π̃) =
1

n/bn

n/bn∑
s=1

1

bn
Rn,s(h, π)Rn,s(h̃, π̃)

=
1

bn
Rn,s(h, π)Rn,s(h̃, π̃).

Under Assumptions 7, 4, and 8, Et,h(π) is stationary, ergodic, and L2-bounded uniformly in π.

Therefore

E
∣∣∣∣∣∣ 1

bn
Rn,s(h, π)Rn,s(h̃, π̃)

∣∣∣∣∣∣ ≤ K/bn → 0.

Next, the NED properties and moment bounds of εt and mψ
t (π) in Assumptions 7, 4, and 8

imply that Et,h(π) = εtεt−h − Dψ(h, π)′H−1(π; γ0)
(
mψ
t (ψ0,n, π) −Eγn [mψ

t (ψ0,n, π)]
)

is station-

ary, Lp-bounded for some p > 2, and L2-NED on an α-mixing base with decay rate O(h−p/(p−2)).

Then ||(1/
√
bn)Yn,1(h, π)||2 and ||(1/

√
ln)Un,1(h, π)||2 are O(1) by Theorem 17.5 in Davidson

(1994) and Theorem 1.6 in McLeish (1975). Observe

∣∣∣∣∣
∣∣∣∣∣ 1n

n/bn∑
s=1

Yn,s(h)Un,s(h̃, π̃)

∣∣∣∣∣
∣∣∣∣∣
1

=

∣∣∣∣∣
∣∣∣∣∣ 1

n/bn

n/bn∑
s=1

ln
bn
Yn,s(h, π)

1

ln
Un,s(h̃, π̃)

∣∣∣∣∣
∣∣∣∣∣
1

=

∣∣∣∣∣
∣∣∣∣∣ 1

n/bn

n/bn∑
s=1

(
ln
bn

)1/2
1√
bn
Yn,s(h, π)

1√
ln
Un,s(h̃, π̃)

∣∣∣∣∣
∣∣∣∣∣
1

≤ 1

n/bn

n/bn∑
s=1

∣∣∣∣∣
∣∣∣∣∣
(
ln
bn

)1/2
1√
bn
Yn,s(h, π)

1√
ln
Un,s(h̃, π̃)

∣∣∣∣∣
∣∣∣∣∣
1

≤ 1

n/bn

n/bn∑
s=1

(
ln
bn

)1/2∣∣∣∣∣
∣∣∣∣∣ 1√
bn
Yn,s(h, π)

∣∣∣∣∣
∣∣∣∣∣
2

∣∣∣∣∣
∣∣∣∣∣ 1√
ln
Un,s(h̃, π̃)

∣∣∣∣∣
∣∣∣∣∣
2
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=

(
ln
bn

)1/2∣∣∣∣∣
∣∣∣∣∣ 1√
bn
Yn,1(h, π)

∣∣∣∣∣
∣∣∣∣∣
2

∣∣∣∣∣
∣∣∣∣∣ 1√
ln
Un,1(h̃, π̃)

∣∣∣∣∣
∣∣∣∣∣
2

= O

((
ln
bn

)1/2)
= o(1)

by stationarity, Minkowski’s inequality, and the Cauchy-Schwartz inequality. The remaining terms

are shown to be o(1) in a similar fashion. This proves A.24.

Finally, by the NED property, we see by the proof of de Jong’s (1997) Theorem 2 that

1

n

n/bn∑
s=1

Yn,s(h, π)Yn,s(h̃, π̃)

p−→ lim
n→∞

1

n
E

[{
n∑
t=1

(
Et,h(π)− E(Et,h(π))

)}{ n∑
t=1

(
Et,h̃(π̃)− E(Et,h̃(π̃))

)}]
.

Combine this with A.24 to see that

nE(ρ1,∗
n (h, π)ρ1,∗

n (h̃, π̃)|Wn)

p−→ lim
n→∞

E[nE(ρ1,∗
n (h, π)ρ1,∗

n (h̃, π̃)|Wn)] = E[Z1,ψ(h, π)Z1,ψ(h̃, π̃)],

so that P (Wn ∈ W) = 1 as desired.

Now consider A.23. Recall Êt,h(ψ̂0,n, π) = εt(ψ̂0,n, π)εt−h(ψ̂0,n, π) − D̂n(h, π)′H−1
n (ψ̂0,n, π)(

mt(ψ̂0,n, π) − 1
n

∑n
t=1mt(ψ̂0,n, π)

)
− 1

n

∑n
t=1+h[εt(ψ̂0,n, π)εt−h(ψ̂0,n, π)− εtεt−h] and Et,h(π) =

εtεt−h − Dψ(h, π)′H−1(π; γ0)
(
mt(ψ0,n, π) −Eγn [mt(ψ0,n, π)]

)
.

Observe that by the construction of zt for ξs iid N(0, 1),

E
[( 1√

n

n∑
t=1+h

zt
(
Et,h(π)− E(Et,h(π))

))2]

= E
[( 1√

n

n/bn∑
s=1

ξs

sbn∑
t=(s−1)bn+1

(
Et,h(π)− E(Et,h(π))

))2]

= E
[( 1√

bn

bn∑
t=1

(
Et,h(π)− E(Et,h(π))

))2]
.
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Then under Assumptions 4, 8, and 9, Et,h(π) − E(Et,h(π)) is zero mean, stationary, Lp-bounded

for some p > 2, and L2-NED with size −1/2 on an α-mixing base with decay rate O(h−p/(p−2)−ι)

by Theorems 17.8 and 17.9 in Davidson (1994). Hence the term above is Oπ(1), so that 1√
bn∑bn

t=1

(
Et,h(π)− E(Et,h(π))

)
= Op,π(1).

We will next prove

1√
n

n∑
t=1+h

zt

(
Êt,h(ψ̂0,n, π)− 1

n

n∑
s=1+h

Êt,h(ψ̂0,n, π)
)

=
1√
n

n∑
t=1+h

zt
(
Et,h(π)− Eγn(Et,h(π))

)
+ op,π(1) (A.25)

which coupled with the previous arguments, uniform convergence of D̂n and Kn, and Assumption

9(v) give

√
nρ̂(w)

n (h, π)

=
1

n−1
∑n

t=1 ε
2
t (θ̂n)

×

{
1√
n

n∑
t=1+h

zt

(
Êt,h(ψ̂0,n, π)− 1

n

n∑
t=1+h

Êt,h(ψ̂0,n, π)
)

+
1√
n

n∑
t=1+h

[εt(ψ̂0,n, π)εt−h(ψ̂0,n, π)− εtεt−h]

− D̂n(h, π)′H−1
n (ψ̂0,n, π)bKn(ψ̃0,n, π)

}

=
1

E(ε2
t )
×

{
1√
n

n∑
t=1+h

zt

(
Et,h(π)− E(Et,h(π))

)
+
√
nEγn [εt(ψ0,n, π)εt−h(ψ0,n, π)− εtεt−h]

−Dψ(h, π)′H−1(π; γ0)bK(ψ0, π; γ0)

}
+ op,π(1)

In order to prove A.25, we must show the following steps:

1√
n

n∑
t=1+h

zt(εt(ψ̂0,n, π)εt−h(ψ̂0,n, π)− εtεt−h)
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=
1√
n

n∑
t=1+h

ztEγn(εt(ψ̂0,n, π)εt−h(ψ̂0,n, π)− εtεt−h) + op(1) (A.26)

D̂n(h, π)′H−1
n (ψ̂0,n, π)

1√
n

n∑
t=1+h

zt

(
mψ
t (ψ̂0,n, π)− 1

n

n∑
s=1

mψ
s (ψ̂0,n, π)

)
= Dψ(h, π)′H−1(π; γ0)

1√
n

n∑
t=1+h

zt

(
mψ
t (ψ0,n, π)− Eγn [mψ

s (ψ0,n, π)]
)

+ op,π(1) (A.27)

1√
n

n∑
t=1+h

zt
1

n

n∑
s=1+h

εsεs−h =
1√
n

n∑
t=1+h

ztE[εsεs−h] + op,π(1) (A.28)

1√
n

n∑
t=1+h

zt
1

n

n∑
s=1+h

(εs(ψ̂0,n, π)εs−h(ψ̂0,n, π)− εsεs−h) = op,π(1) (A.29)

1√
n

n∑
t=1+h

ztD̂n(h, π)′H−1
n (ψ̂0,n, π)

1

n

n∑
s=1+h

(
mψ
s (ψ̂0,n, π)− 1

n

n∑
u=1

mψ
u (ψ̂0,n, π)

)
= Dψ(h, π)′H−1(π; γ0)

1√
n

n∑
t=1+h

ztEγn [mψ
s (ψ0,n, π)− Eγn [mψ

s (ψ0,n, π)]]

+ op,π(1)

= op,π(1) (A.30)

Consider A.26. Since zt is a mean zero Gaussian random variable that is independent of the

sample, the proof of Lemma A.2.4 applies to show

1√
n

n∑
t=1+h

zt(εt(ψ̂0,n, π)εt−h(ψ̂0,n, π)− εtεt−h)

=
1√
n

n∑
t=1+h

zt(εt(ψ0,n, π)εt−h(ψ0,n, π)− εtεt−h)

+
√
n(ζ̂n − ζn)′

1

n

n∑
t=1+h

zt[dζ,t(π)εt−h(ψ0,n, π) + dζ,t−h(π)εt(ψ0,n, π)]

+ op,π(1).

Let Sζ be the ζ selection matrix that selects the rows of ψ corresponding to ζ . Recall that
√
n(ζ̂n−

135



www.manaraa.com

ζn) =
√
n(ψ̂n(π)− ψn)Sζ = Op,π(1) and observe

1

n

n∑
t=1+h

zt[dζ,t(ψ0,n, π)εt−h(ψ0,n, π)]

=
1

n

n∑
t=1

zt[dζ,t(ψ0,n, π)εt−h(ψ0,n, π)] + op,π(1)

=
1

n

n/bn∑
s=1

ξs

sbn∑
t=(s−1)bn+1

[dζ,t(ψ0,n, π)εt−h(ψ0,n, π)] + op,π(1)

by the moment bounds in Assumption 9 and the construction of zt. Recall ξs is iid, independent of

the sample, and has zero mean and unit variance. Then stationarity, and the moment bounds imply

that for each π ∈ Π,

Eγn

[( 1

n

n/bn∑
s=1

ξs

sbn∑
t=(s−1)bn+1

[dζ,t(ψ0,n, π)εt−h(ψ0,n, π)]
)2]

=
bn
n
Eγn

[( 1

bn

bn∑
t=1

[dζ,t(ψ0,n, π)εt−h(ψ0,n, π)]
)2]

≤ bn
n
Eγn

[
[dζ,t(ψ0,n, π)εt−h(ψ0,n, π)]2

]
= o(1)

because bn = o(n). Now apply Chebyshev’s inequality to see

P (
1

n

n∑
t=1+h

zt[dζ,tεt−h(ψ0,n, π)] > η) ≤ bn
n
E
[
[dζ,t(ψ0,n, π)εt−h(ψ0,n, π)]2

]
/η2 → 0,

so that 1
n

∑n
t=1+h zt[dζ,t(ψ0,n, π)εt−h(ψ0,n, π)]

p−→ 0 point-wise on Π. Stochastic Equicontinuity

follows from a mean value theorem argument and the moment bounds in Assumption 9 (See the

proof of Lemma A.2.4). This implies that
√
n(ζ̂n − ζn)′ 1

n

∑n
t=1+h zt [dζ,t(ψ0,n, π)εt−h(ψ0,n, π) +

dζ,t−h(ψ0,n, π)εt(ψ0,n, π)] = op,π(1), so that

1√
n

n∑
t=1+h

zt(εt(ψ̂0,n, π)εt−h(ψ̂0,n, π)− εtεt−h)

=
1√
n

n∑
t=1+h

zt(εt(ψ0,n, π)εt−h(ψ0,n, π)− εtεt−h) + op,π(1).
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Now use the construction of zt to see

1√
n

n∑
t=1+h

zt(εt(ψ0,n, π)εt−h(ψ0,n, π)− εtεt−h)

=
1√
n/bn

n/bn∑
s=1

ξs

[√
bn

1

bn

sbn∑
t=(s−1)bn+1

(εt(ψ0,n, π)εt−h(ψ0,n, π)− εtεt−h)

]

=
1√
n/bn

n/bn∑
s=1

ξs

[√
bnEγn(εt(ψ0,n, π)εt−h(ψ0,n, π)− εtεt−h)

]
+ op(1)

=
1√
n

n∑
t=1

ztEγn(εt(ψ0,n, π)εt−h(ψ0,n, π)− εtεt−h) + op(1)

because ξs are independent of the data and by stationarity, ergodicity, and moment bounds in

Assumptions 7, 8, and 9. Hence A.26 holds.

Next, consider A.27.

D̂n(h, π)′H−1
n (ψ̂0,n, π)

1√
n

n∑
t=1+h

ztm
ψ
t (ψ̂0,n, π)

= Dψ(h, π)′H−1(π; γ0)
1√
n

n∑
t=1+h

ztm
ψ
t (ψ0,n, π)

+Dψ(h, π)′H−1(π; γ0)
1√
n

n∑
t=1+h

zt
(
mψ
t (ψ̂0,n, π)−mψ

t (ψ0,n, π)
)

+
(
D̂n(h, π)′H−1

n (ψ̂0,n, π)−Dψ(h, π)′H−1(π; γ0)
) 1√

n

n∑
t=1+h

ztm
ψ
t (ψ0,n, π)

+
(
D̂n(h, π)′H−1

n (ψ̂0,n, π)−Dψ(h, π)′H−1(π; γ0)
)

× 1√
n

n∑
t=1+h

zt
(
mψ
t (ψ̂0,n, π)−mψ

t (ψ0,n, π)
)

Recall that supπ∈Π ||D̂n(h, π)−Dψ(h, π)|| p−→ 0 by Lemma A.2.5, and supπ∈Π ||Hn(ψ̂0,n, π)−

H(π; γ0)|| p−→ 0 by assumption; hence D̂n(h, π)′H−1
n (ψ̂0,n, π) − Dψ(h, π)′H−1(π; γ0) = op,π(1).

Next, observe that 1√
n

∑n
t=1+h ztm

ψ
t (ψ0,n, π) = Op(1) point-wise on Π by the moment bounds, the

NED property, Davidson (1994), Theorem 17.5 and McLeish (1975), Theorem 1.6, and Cheby-

shev’s inequality.
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Finally, observe

|| 1√
n

n∑
t=1+h

zt
(
mψ
t (ψ̂0,n, π)−mψ

t (ψ0,n, π)
)
||

≤ sup
ζ∗∈Z
|| 1√

n

n∑
t=1+h

zt
∂

∂ζ
mψ
t (0, ζ∗, π)|| × ||ζ̂n − ζn||

by the mean value theorem. Since ||ψ̂n(π) − ψn|| = Op,π(1/
√
n), it remains to show that

supπ∈Π supζ∗∈Z || 1√
n

∑n
t=1+h zt

∂
∂ζ
mψ
t (0, ζ∗, π)|| = op(

√
n), which is shown in Lemma A.2.2.

Now following the argument above, we need only prove

1√
n

n∑
t=1+h

zt
1

n

n∑
s=1

mψ
s (ψ̂0,n, π) =

1√
n

n∑
t=1+h

ztEγn [mψ
s (ψ0,n, π)] + op(1),

which follows from an identical argument.

Next we prove step A.28. Recall that by Davidson (1994), Theorems 17.9, {εtεt−h} is zero

mean, stationary, Lp-bounded for some p > 2, and L2-NED with size −1/2 on an α-mixing

base with decay rate O(h−p/(p−2)−ι), so E[
(

1√
n

∑n
t=1(εtεt−h −E[εtεt−h])

)2
] = O(1) by Davidson

(1994), Theorem 17.5 and McLeish (1975), Theorem 1.6. Hence, 1√
n

∑n
t=1 εtεt−h − E[εtεt−h] =

Op(1), and 1
n

∑n
t=1+h εtεt−h − E[εtεt−h] = Op(1/

√
n).

Next, we prove A.29. Recall

1√
n

n∑
t=1

zt =

√
bn√
n/bn

n/bn∑
t=1

ξt = Op(
√
bn).

Recall that εt(θ) is a continuous function and εt(ψ∗, π) does not depend on π for all ψ∗ with β∗ = 0,

and supπ∈Π ||ψ̂0,n(π) − ψ0,n||
p−→ 0. Then by the moment bounds, stationarity and ergodicity in

Assumptions 7 and 8,

sup
π∈Π
|| 1
n

n∑
s=1+h

(εs(ψ̂0,n, π)εs−h(ψ̂0,n, π)− εsεs−h)− Eγn(εs(ψ0,n, π)εs−h(ψ0,n, π)− εsεs−h)||

p−→ 0.
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Now recall that
√
nEγn(εs(ψ0,n, π)εs−h(ψ0,n, π) − εsεs−h) = O(1) by Assumption 9 and that the

construction of zt has ξs iid, mean zero, and independent of the data, so

1

n

n∑
t=1+h

zt
[√
nEγn(εs(ψ0,n, π)εs−h(ψ0,n, π)− εsεs−h)

]
=

1

n/bn

n/bn∑
s=1

ξs
1

bn

sbn∑
t=(s−1)bn+1

[√
nEγn(εt(ψ0,n, π)εt−h(ψ0,n, π)− εtεt−h)

]
=

1

n/bn

n/bn∑
s=1

ξs
[√
nEγn(εt(ψ0,n, π)εt−h(ψ0,n, π)− εtεt−h)

]
= op(1).

Finally, we prove A.30:

1√
n

n∑
t=1+h

ztD̂n(h, π)′H−1
n (ψ̂0,n, π)

1

n

n∑
s=1+h

ms(ψ̂0,n, π)

= Dψ(h, π)′H−1(π; γ0)
1√
n

n∑
t=1+h

ztEγn [mψ
s (π)] + op,π(1)

= op,π(1)

First, recall 1√
n

∑n
t=1 zt = Op(

√
bn) and supπ∈Π ||D̂n(h, π)′H−1

n (ψ̂0,n, π)

−Dψ(h, π)′H−1(π; γ0)|| p−→ 0. It is therefore sufficient to show 1
n

∑n
t=1m

ψ
t (ψ̂0,n, π) =

Eγn [mψ
s (π)] + op,π(1).

Next, recall the expansion

mψ
t (ψ0,n, π) = mψ

t (ψ0,n, π)− Eγn [mψ
t (ψ0,n, π)] + βn

∂

∂β̃
Eγ̃n [mψ

t (ψ0,n, π)]

for some γ̃n such that ||γ̃n − γn|| ≤ ||γ0,n − γn||.

Next, recall {mt(ψ0,n, π) − Eγn [mt(ψ0,n, π)]} is zero mean, stationary, Lp-bounded for some

p > 2, and L2-NED with size −1/2 on an α-mixing base with decay rate O(h−p/(p−2)−ι), so
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E[
(

1√
n

∑n
t=1(mt(ψ0,n, π)−Eγn [mt(ψ0,n, π)])

)2
] = O(1) point-wise on Π by McLeish (1975), The-

orem 1.6. Hence, 1√
n

∑n
t=1(mt(ψ0,n, π)−Eγn [mt(ψ0,n, π)]) = Op(1), and 1

n

∑n
t=1+h(mt(ψ0,n, π)−

Eγn [mt(ψ0,n, π)]) = Op(1/
√
n) point-wise on Π. It remains to show stochastic equicontinuity,

which follows from a mean value theorem argument paired with the uniform moment bounds in

Assumption 4.

For the last term in the expansion, observe that 1
n

∑n
t=1Eγ̃n [mt(ψ0,n, π)] ≡ Kn(ψ̃n, π; γ̃n) →

K(ψ0, π; γ0) uniformly over π ∈ Π by Assumptions 1 and because βn = O(1/
√
n) under weak

identification. Thus, 1
n

∑n
t=1 βn

∂
∂β̃
Eγ̃n [mt(ψ0,n, π)] = O(1/

√
n).

Finally, observe that

|| 1
n

n∑
t=1+h

mt(ψ̂0,n, π)− 1

n

n∑
t=1+h

mt(ψ0,n, π)|| ≤ sup
π∈Π

sup
ζ∗∈Z
|| ∂
∂ζ
mt(0, ζ

∗, π)|| × ||ζ̂n − ζn||

by the mean value theorem. Now recall that ||ζ̂n − ζn|| = Op,π(1/
√
n) and the moment bounds in

Assumption 4 to complete the proof.

This completes the proof of A.25. Hence, A.23 holds, so combined with A.22, we see that

A.20 holds:

{
√
nρ̂(w)

n (h, π) : 1 ≤ h ≤ L, π ∈ Π} ⇒p {
◦
Z (h, π) : 1 ≤ h ≤ L, π ∈ Π}

It remains to prove the joint convergence result A.21:

{
√
nρ̂(w)

n (h, π), π∗(bs)(b, γ0) : 1 ≤ h ≤ L, π ∈ Π}

⇒p {
◦
Z (h, π), π∗(b, γ0) : 1 ≤ h ≤ L, π ∈ Π}

which will follows simply from the construction of ρ̂(w)
n (h, π), the fact that π∗(bs)(b, γ0) is a con-

tinuous function of σ̂nĜ
(bs)
n (π), Kn(ψ̂0,n, π; γ0), and Hn(ψ0,n, π), and the continuous mapping
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theorem. The result A.16 follows. Hence,

{
√
nρ̂(w)

n (h) : 1 ≤ h ≤ L} ⇒p {
◦
Z (h, π∗(b, γ0)) : 1 ≤ h ≤ L}

for each L ∈ N, where {
◦
Z (h, π) : h ∈ N, π ∈ Π} is an independent copy of {Zψ(h, π) : h ∈

N, π ∈ Π}, the zero mean Gaussian process in Lemma 3.2(a).

Now we prove A.17:

sup
c>0

∣∣∣P ( max
1≤h≤Ln

|
√
nρ̂(w)

n (h)| ≤ c|Wn)− P ( max
1≤h≤Ln

|
◦
Z (h, π∗(b, γ0))| ≤ c)

∣∣∣ p−→ 0 (A.31)

for the process {
◦
Z (h, π) : 1 ≤ h ≤ L, π ∈ Π} and some sequence of positive integers {Ln},

Ln →∞ and Ln = o(n).

This follows the proof of A.7 exactly by defining

AL,n ≡ sup
c>0

∣∣∣P ( max
1≤h≤L

|
√
nρ̂(w)

n (h)| ≤ c|Wn)− P ( max
1≤h≤L

|
◦
Z (h, π∗(b, γ0))| ≤ c)

∣∣∣ p−→ 0.

Step 3. Finally, we show the consistency of the critical values. Define the quantile functions

F̂−1
n (u|·) = inf{c ≥ 0 : P (T̂ (w)

n ≤ c|·) ≥ u}, F−1
n (u) = inf{c ≥ 0 : P (T̂n ≤ c) ≥ u}.

Operate conditionally on the sample Wn. From A.17, {T̂ (w)
n,j (γn, b)}Mj=1 is a sequence of iid

draws from max1≤h≤Ln |
◦
Z (h, π∗(b, γ0))| asymptotically with probability approaching one with

respect to the sampleWn. Thus under {γn} ∈ Γ(γ0, 0, b) with ||b|| <∞, T̂n and T̂ (w)
n (γn, b) have

the same limits under H0. Hence, under H0,

sup
c>0

∣∣∣P (T̂ (w)
n (γn, b) ≤ c|Wn)− P (T̂n ≤ c)

∣∣∣ p−→ 0.

Therefore supu∈[0,1]

∣∣∣F̂−1
n (u|Wn)−F−1

n (u)
∣∣∣ p−→ 0. Further, by independence and letting Mn →∞,

the bootstrapped critical value ĉ(w)
n,1−α,Mn

(γn, b) = T̂ (w)
n,[(1−α)·Mn](γn, b) is a central order statistic

(see e.g. Galambos (1987)) of a conditionally iid random variable, so
∣∣∣ĉ(w)
n,1−α,Mn

(γn, b)− F̂−1
n (1−

α|Wn)
∣∣∣ p−→ 0. Combining these statements yields

∣∣∣ĉ(w)
n,1−α,Mn

(γn, b) − F−1
n (1 − α)

∣∣∣ p−→ 0. Since
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cn,1−α(γn, b) = F−1
n (1− α), the proof is complete.

Finally, we must show that under the alternative hypothesis, P (T̂n > ĉ
(k)
1−α,n)→ 1 for k = w, s.

Under the alternative, ρ(h) 6= 0 for some h ∈ N.

Let {γn} ∈ Γ(γ0,∞, ω0). By the triangle inequality and Theorem 2.3.2,

max
1≤h≤Ln

|
√
nρ̂n(h)| ≤ max

1≤h≤Ln
|
√
n(ρ̂n(h)− ρ(h))|+ max

1≤h≤Ln
|
√
nρ(h)|

= max
1≤h≤Ln

(|Zθn(h)|) + max
1≤h≤Ln

|
√
nρ(h)|+ op(1)

p−→∞.

Similarly, if {γn} ∈ Γ(γ0, 0, b) with ||b|| <∞, then

max
1≤h≤Ln

sup
π∈Π
|
√
nρ̂n(h, π)| ≤ max

1≤h≤Ln
sup
π∈Π

(
√
n|ρ̂n(h; π)− ρ(h)|) + max

1≤h≤Ln
|
√
nρ(h)|

= max
1≤h≤Ln

sup
π∈Π

(|Zψn (h, π)|) + max
1≤h≤Ln

|
√
nρ(h)|+ op(1)

p−→∞.

Then using arguments above,

P (T̂n ≥ĉ(k)
1−α,n|Wn)

≥ min{P ( max
1≤h≤Ln

|
◦
Zψ (h, π∗(b, γ0))| ≤ T̂n), P ( max

1≤h≤Ln
|
◦
Zθ (h)| ≤ T̂n)}+ op(1)

→ 1.

A.2 Appendix: Supporting Lemmas and Proofs

A.2.1 Lemmas and Proofs relating to ULLNs for mt

Lemma A.2.1. Under Assumption 4, and {γn} ∈ Γ(γ0,∞, ω0),

sup
θ∈Θ
|| 1
n

n∑
t=1

zt
∂

∂θ
mt(θ)||

p−→ 0 (A.32)
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sup
θ∈Θ
|| 1
n

n∑
t=1

∂

∂θ
mt(θ)− E

[ ∂
∂θ
mt(θ)

]
|| p−→ 0 (A.33)

1√
n

n∑
t=1+h

ztm
θ
t = Op(1). (A.34)

Proof. Consider the first statement. For iid ξs ∼ N(0, 1) that is independent of the data

1

n

n∑
t=1

zt
∂

∂θ
mt(θ) =

bn
n

n/bn∑
s=1

ξs
1

bn

bn∑
t=(s−1)bn+1

∂

∂θ
mt(θ),

and ∂
∂θ
mt(θ) is uniformly integrable on Θ under Assumption 4. Thus, for each i = 1, . . . , kθ and

j = 1, . . . , km, stationarity and Minkowski’s inequality imply

E
[( 1

n

n∑
t=1

∂

∂θi
mj,t(θ)

)2]
= E

[(bn
n

n/bn∑
s=1

ξs
1

bn

bn∑
t=(s−1)bn+1

∂

∂θi
mj,t(θ)

)2]

=
(bn
n

)2

E
[( 1

bn

bn∑
t=(s−1)bn+1

∂

∂θi
mj,t(θ)

)2]
≤
(bn
n

)2

E
[(

sup
θ∈Θ

∂

∂θi
mj,t(θ)

)2]
→ 0,

so we see that 1
n

∑n
t=1 zt

∂
∂θ
mt(θ)

p−→ 0 pointwise on Θ. Further, 1
n

∑n
t=1 zt

∂
∂θ
mt(θ) is stochastically

equicontinuous. Observe that by the mean value theorem

sup
|θ−θ̃|<δ

∣∣∣ 1
n

n∑
t=1

zt

( ∂
∂θ
mt(θ)−

∂

∂θ
mt(θ̃)

)∣∣∣ ≤ sup
|θ−θ̃|<δ

∣∣∣ 1
n

n∑
t=1

zt

( ∂
∂θ

∂

∂θ′
mt(θ

∗)× |θ − θ̃|
)∣∣∣

≤ sup
θ∈Θ

∣∣∣ 1
n

n∑
t=1

zt

( ∂
∂θ

∂

∂θ′
mt(θ)× δ

)∣∣∣.
It follows that, given (ε, η) > 0, there is a δ ∈ (0, ηε/E[supθ∈Θ |(∂2/∂θ∂θ′)mt(θ)|]) such that

lim
n→∞

P
(

sup
|θ−θ̃|<δ

∣∣∣ 1
n

n∑
t=1

zt

( ∂
∂θ
mt(θ)−

∂

∂θ
mt(θ̃)

)∣∣∣ > η
)

≤ lim
n→∞

P
(

sup
θ∈Θ

∣∣∣ 1
n

n∑
t=1

zt

( ∂
∂θ

∂

∂θ′
mt(θ)

)
>
η

δ

)
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≤ δ

η
× lim

n→∞
E
(

sup
θ∈Θ

∣∣∣ 1
n

n∑
t=1

zt

( ∂
∂θ

∂

∂θ′
mt(θ)

)∣∣∣)
=
δ

η
× lim

n→∞
E
(

sup
θ∈Θ

∣∣∣ 1

n/bn

n/bn∑
s=1

ξs
1

bn

sbn∑
t=(s−1)bn+1

( ∂
∂θ

∂

∂θ′
mt(θ)

)∣∣∣)
≤ δ

η
× lim

n→∞
E
(

sup
θ∈Θ

∣∣∣ ∂
∂θ

∂

∂θ′
mt(θ)

∣∣∣) < ε.

The second inequality follows from Markov, and the final inequality follows from the uniform

integrability of supθ∈Θ

∣∣∣ ∂∂θ ∂
∂θ′
mt(θ)

∣∣∣ in Assumption 4. Hence, 1
n

∑n
t=1 zt

∂
∂θ
mt(θ) is stochastically

equicontinuous. Corollary 3.1 in Newey (1991) gives the desired result.

The second statement follows similarly to the first.

Consider now the final statement. Recall that mθ
t is zero mean, stationary, Lp-bounded for

some p > 2, and L2-NED with size 1/2 on an α-mixing base with decay O(h−p/(p−2)−ι). Then by

Theorem 17.5 in Davidson (1994) and Theorem 1.6 in McLeish (1975)E[(1/
√
n×
∑n

t=1m
θ
i,t)

2] =

O(1) for each i = 1, . . . , km. Use the construction of zt to see that

E
[( 1√

n

n∑
t=1

ztm
θ
i,t

)2]
= E

[( 1√
n/bn

n/bn∑
s=1

ξs
1√
bn

sbn∑
t=(s−1)bn+1

mθ
i,t

)2]

=
1

n/bn

n/bn∑
s=1

E
[( 1√

bn

sbn∑
t=(s−1)bn+1

mθ
i,t

)2]
= O(1).

Thus 1√
n

∑n
t=1 ztm

θ
i,t = Op(1).

Lemma A.2.2. Under Assumption 4, and {γn} ∈ Γ(γ0, 0, b) with ||b|| <∞,

sup
π∈Π

sup
ζ∈Z
|| 1
n

n∑
t=1

zt
∂

∂ζ
mt(0, ζ, π)|| p−→ 0 (A.35)

sup
π∈Π

sup
ζ∈Z
|| 1
n

n∑
t=1

∂

∂ζ
mt(0, ζ, π)− Eγn

[ ∂
∂θ
mt(0, ζ, π)

]
|| p−→ 0 (A.36)

1√
n

n∑
t=1+h

ztm
ψ
t (π) = Op,π(1). (A.37)
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Proof. Consider the first statement. Recall ξs ∼ iid N(0, 1) and is independent of the data, so

1

n

n∑
t=1

zt
∂

∂ζ
mt(0, ζ, π) =

bn
n

n/bn∑
s=1

ξs
1

bn

bn∑
t=(s−1)bn+1

∂

∂ζ
mt(0, ζ, π),

and ∂
∂ζ
mt(0, ζ, π) is uniformly integrable on Z × Π under Assumption 4. Thus, for each i =

1, . . . , kζ and j = 1, . . . , km, stationarity and Minkowski’s inequality imply

Eγn

[( 1

n

n∑
t=1

∂

∂ζi
mj,t(0, ζ, π)

)2]
= Eγn

[(bn
n

n/bn∑
s=1

ξs
1

bn

bn∑
t=(s−1)bn+1

∂

∂ζi
mj,t(0, ζ, π)

)2]

=
(bn
n

)2

Eγn

[( 1

bn

bn∑
t=(s−1)bn+1

∂

∂ζi
mj,t(0, ζ, π)

)2]
≤
(bn
n

)2

Eγn

[(
sup
π∈Π

sup
ζ∈Z

∂

∂ζi
mj,t(0, ζ, π)

)2]
→ 0,

so we see that 1
n

∑n
t=1 zt

∂
∂ζ
mt(0, ζ, π)

p−→ 0 pointwise on Z × Π. Further, 1
n

∑n
t=1 zt

∂
∂ζ
mt(0, ζ, π)

is stochastically equicontinuous. Observe that by the mean value theorem

sup
||(ζ,π)−(ζ̃,π̃)||<δ

∣∣∣ 1
n

n∑
t=1

zt

( ∂
∂ζ
mt(0, ζ, π)− ∂

∂ζ
mt(0, ζ̃, π̃)

)∣∣∣
≤ sup
||(ζ,π)−(ζ̃,π̃)||<δ

∣∣∣ 1
n

n∑
t=1

zt

( ∂
∂ζ

∂

∂(ζ, π)′
mt(0, ζ

∗, π∗)× ||(ζ, π)− (ζ̃ , π̃)||
)∣∣∣

≤ sup
π∈Π

sup
ζ∈Z

∣∣∣ 1
n

n∑
t=1

zt

( ∂
∂ζ

∂

∂(ζ, π)′
mt(0, ζ, π)× δ

)∣∣∣.
Using the construction of zt, Markov’s inequality, and the uniform integrability of

(∂2/∂ζ∂(ζ, π)′)mt(0, ζ, π) in Assumption 4, it follows that, given (ε, η) > 0, there is a

δ ∈ (0, ηε/E[sup
π∈Π

sup
ζ∈Z
|(∂2/∂ζ∂(ζ, π)′)mt(0, ζ, π)|])

such that

lim
n→∞

P
(

sup
||(ζ,π)−(ζ̃,π̃)||<δ

∣∣∣ 1
n

n∑
t=1

zt

( ∂
∂ζ
mt(0, ζ, π)− ∂

∂ζ
mt(0, ζ̃, π̃)

)∣∣∣ > η
)
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≤ δ

η
× lim

n→∞
Eγn

(
sup
π∈Π

sup
ζ∈Z

∣∣∣ 1
n

n∑
t=1

( ∂
∂ζ

∂

∂(ζ, π)′
mt(0, ζ, π)

∣∣∣) < ε.

Corollary 3.1 in Newey (1991) then gives the desired result.

Now consider the final statement. Recall that mψ
t (π) − Eγn [mψ

t (π)] is zero mean, station-

ary, Lp-bounded for some p > 2, and L2-NED with size 1/2 on an α-mixing base with decay

O(h−p/(p−2)−ι). Then by Theorem 17.5 in Davidson (1994) and Theorem 1.6 in McLeish (1975)

E
[(

1/
√
n×

∑n
t=1(mψ

t (π)−Eγn [mψ
t (π)])

)2]
= O(1) for each i = 1, . . . , km. Use the construction

of zt to see that

E
[( 1√

n

n∑
t=1

zt(m
ψ
t (π)− Eγn [mψ

t (π)])
)2]

= E
[( 1√

n/bn

n/bn∑
s=1

ξs
1√
bn

sbn∑
t=(s−1)bn+1

(mψ
t (π)− Eγn [mψ

t (π)])
)2]

=
1

n/bn

n/bn∑
s=1

E
[( 1√

bn

sbn∑
t=(s−1)bn+1

(mψ
t (π)− Eγn [mψ

t (π)])
)2]

= O(1).

Thus 1√
n

∑n
t=1 zt(m

ψ
t (π)− Eγn [mψ

t (π)]) = Op(1).

A.2.2 Lemmas and Proofs relating to the covariance expansion

In order to conserve space in this appendix, we use the following shorthand notation:

R̂n(h, θ) = 1
n

∑h
t=1+h εt(θ)εt−h(θ) R̂n(h) ≡ R̂n(h, θ̂n)

Rn(h, θ) = Eγn(εt(θ)εt−h(θ)) Rn(h) ≡ Rn(h, θn)

R0,n(h, θ) = Eγ0,n(εt(θ)εt−h(θ)) R0,n(h) ≡ R0,n(h, θ0,n)

R(h, θ) = Eγ0(εt(θ)εt−h(θ)) R(h) ≡ R(h, θ0)

ρ̂n(h) = R̂n(h)

R̂n(0)
ρn(h) = Rn(h)

Rn(0)

ρ̂n(h; π) = R̂n(h,ψ̂n(π),π)

R̂n(0)
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Observe that for true parameter γ∗, εt(θ∗) = εt by definition, so

R0,n(h) ≡ R0,n(h, θ0,n) ≡ Rn(h) ≡ Rn(h, θn) ≡ R0(h) ≡ R0(h, θ0) ≡ E(εtεt−h).

Lemma A.2.3. Under {γn} ∈ Γ(γ0, 0, b) with ||b|| < ∞ and Assumption 5, R̂n(h) − Rn(h) =

Op(1/
√
n).

The proof follows trivially from Lemma A.2.4.

Lemma A.2.3 establishes convergence in probability to zero of the difference between the

denominator in the test statistic, R̂n(0) = 1
n

∑n
t=1 ε

2
t (θ̂n), and the second moment of εt, Eγn(ε2

t ) =

E(ε2
t ) ≡ σ2.

Proof of Lemma A.2.3. Lemma A.2.4 shows that
√
n
(
R̂n(h, ψ̂n(π), π) − Rn(h)

)
= Opπ(1), so

for any h = 0, 1, 2, . . . and π = π̂n, R̂n(h, ψ̂n(π̂n), π̂n)−Rn(h) = Op(1/
√
n).

Lemma A.2.4. (a) Recall Dn(h, π) = 1
n

∑n
t=1+h

[
dψ,t−h(ψ0,n, π)εt(ψ0,n, π)

+dψ,t(ψ0,n, π)εt−h(ψ0,n, π)
]
, where dψ,t(ψ0,n, π) = ∂

∂ψ
εt−h(ψ, π)

∣∣
(ψ,π)=(ψ0,n,π)

. Under

{γn} ∈ Γ(γ0, 0, b) with ||b|| <∞ and Assumptions 5 and 9,

√
n
(
R̂n(h, ψ̂n(π), π)− E(εtεt−h)

)
=
√
n
( 1

n

n∑
t=1+h

[
εtεt−h − E(εtεt−h)

])
+
(
H−1
n (ψ0,n, π)

1√
n

n∑
t=1

mψ
t (ψ0,n, π)

)′
Dn(h, π)

+
√
nEγn

[
εt(ψ0,n, π)εt−h(ψ0,n, π)− εtεt−h

]
+ opπ(1)

(b) Recall Dθn(h) = 1
n

∑n
t=1+h

[
dθ,t−h(θn)εt(θn) + dθ,t(θn)εt−h(θn)

]
, where dθ,t(θn) =

∂
∂θ
εt−h(θ)

∣∣
θ=θn

. Under {γn} ∈ Γ(γ0,∞, ω0) and Assumptions 6 and 10,

√
n
(
R̂n(h)− E(εtεt−h)

)
=
( 1√

n

n∑
t=1+h

[
εt(θn)εt−h(θn)− E(εtεt−h)

])
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+
(
J−1
n (θn)

1√
n

n∑
t=1

mθ
t (θn)

)′
B−1(βn)Dθn(h) + op(1)

Proof of Lemma A.2.4. (a) Consider an expansion of R̂n(h, ψ̂n(π), π) about ψ0,n:

√
n
(
R̂n(h, ψ̂n(π), π)−Rn(h)

)
=
√
n
(
R̂n(h, ψ0,n, π)−Rn(h)

)
+
√
n(ψ̂n(π)− ψ0,n)′

∂

∂ψ
R̂n(h, ψ0,n, π)

+
1

2

√
n(ψ̂n(π)− ψ0,n)′

(
∂

∂ψ

∂

∂ψ′
R̂n(h, ψ̃n, π)

)
(ψ̂n(π)− ψ0,n)

=
√
n
(
R̂n(h, ψ0,n, π)−Rn(h)

)
+
(
H−1
n (ψ0,n, π)

1√
n

n∑
t=1

mψ
t (ψ0,n, π)

)′
Dn(h, π) + opπ(1)

for some ψ̃n st 0 ≤ ||ψ̃n − ψ0,n|| ≤ ||ψ̂n(π) − ψ0,n|| where the first equality follows from a

second order expansion, and the second follows from Assumption 5.ii, stationarity, ergodicity,

and the moment bounds in Assumption 9, and Lemma A.2.5. In particular, we show

|| ∂
∂ψ

R̂n(h, ψ0,n, π)−Dn(h, π)|| = opπ(1)

and

|| ∂
∂ψ

∂

∂ψ′
R̂n(h, ψ̃n, π)− D̃n(h, π)|| = opπ(1)

in Lemma A.2.5. From the second statement and Assumption 5, we have that

√
n(ψ̂n(π)− ψ0,n)′

(
∂

∂ψ

∂

∂ψ′
R̂n(h, ψ̃n, π)

)
(ψ̂n(π)− ψ0,n)

=
(
H−1
n (ψ0,n, π)

1√
n

n∑
t=1

mψ
t (ψ0,n, π)

)′
D̃n(h, π)×Opπ(1/

√
n) + opπ(1)

= opπ(1).

In order to deal with the term
√
n
(
R̂n(h, ψ0,n, π) − Rn(h)

)
, add and subtract
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1√
n

∑n
t=1+h εtεt−h:

√
n
(
R̂n(h, ψ0,n, π)−Rn(h)

)
=

1√
n

n∑
t=1+h

[
εt(ψ0,n, π)εt−h(ψ0,n, π)− εtεt−h

]
+
[ 1√

n

n∑
t=1+h

εtεt−h −Rn(h)
]

=
1√
n

n∑
t=1+h

[
εt(ψ0,n, π)εt−h(ψ0,n, π)− εtεt−h

]
+

1√
n

n∑
t=1+h

[
εtεt−h −Rn(h)

]
−
(1 + h√

n

)
Rn(h)

=
1√
n

n∑
t=1+h

[
εtεt−h −Rn(h)

]
+
√
n
( 1

n

n∑
t=1+h

[
εt(ψ0,n, π)εt−h(ψ0,n, π)− εtεt−h

])
−
(1 + h√

n

)
Rn(h)

=
1√
n

n∑
t=1+h

[
εtεt−h −Rn(h)

]
+
√
n
( 1

n

n∑
t=1+h

[
εt(ψ0,n, π)εt−h(ψ0,n, π)− εtεt−h

])
+O(h/

√
n).

Remark 7. Recall that h ≤ Ln = o(n). This is sufficient as the argument above only relies on

arguments pointwise in h.

Finally, recall
√
n
[
Eγn
[
εt(ψ0,n, π)εt−h(ψ0,n, π)− εtεt−h

]
is O(1/

√
n) by Assumption 9. Fur-

ther, εt(ψ0,n, π) does not depend on π by Assumption 3. Then by stationarity and ergodicity in

Assumption 8, 1
n

∑n
t=1+h

[
εt(ψ0,n, π)εt−h(ψ0,n, π)−εtεt−h

]
p−→ Eγn

[
εt(ψ0,n, π)εt−h(ψ0,n, π)−

εtεt−h

]
= O(1/

√
n).

(b) Under Assumption 6, π̂n is consistent, so we can expand the sample covariance estimator

R̂n(h) about the true parameter θn. Consider an expansion of R̂n(h, ψ̂n(π), π) about ψ0,n:

√
n
(
R̂n(h, θ̂n)−Rn(h)

)
=
√
n
(
R̂n(h, θn)−Rn(h)

)
+
√
n(θ̂n − θn)′

∂

∂θ
R̂n(h, θn)
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+
1

2

√
n(θ̂n − θn)′

(
∂

∂θ

∂

∂θ′
R̂n(h, θ̃n)

)
(θ̂n − θn)

=
√
n
(
R̂n(h, θn)−Rn(h)

)
+
(
J−1
n (γ0)Gθ

n(γ0)
)′
B−1(βn)Dθn(h) + op(1)

for some θ̃n st 0 ≤ ||θ̃n − θn|| ≤ ||θ̂n − θn||.

Lemma A.2.5. Under {γn} ∈ Γ(γ0, 0, b) with ||b|| < ∞ and Assumptions 5 and 9, we have for

some ψ∗0,n st |ψ∗0,n − ψ0,n|
p−→ 0

(a) || ∂
∂ψ
R̂n(h, ψ0,n, π)−Dn(h, π)|| = opπ(1)

(b) || ∂
∂ψ

∂
∂ψ′
R̂n(h, ψ∗0,n, π)− D̃n(h, π)|| = opπ(1)

Proof of Lemma A.2.5. We appeal to a sequence of theorems detailed in Davidson (1994), Chap-

ter 21.2

(a) Using differentiability (Assumption 9(ii,iii)) of ∂
∂ψ
R̂n(h, ψ, π)−Dn(h, ψ, π), define

Bn = sup
π∈Π
|| ∂
∂π

( ∂

∂ψ
R̂n(h, ψ0,n, π)−Dn(h, ψ0,n, π)

)
||.

By Assumption 9(iv), Bn = Op(1). Further, by an application of the MVT,

||
( ∂

∂ψ
R̂n(h, ψ0,n, π)−Dn(h, ψ0,n, π)

)
−
( ∂

∂ψ
R̂n(h, ψ0,n, π

′)−Dn(h, ψ0,n, π
′)
)
|| ≤ Bn||π−π′|| a.s.

Then by following Davidson (1994), Theorem 21.10, we see that
{

∂
∂ψ
R̂n(h, ψ0,n, π) −

Dn(h, ψ0,n, π)
}

is stochastically equicontinuous.

Next, observe that

|| ∂
∂ψ

R̂n(h, ψ0,n, π)−Dn(h, ψ0,n, π)|| p−→ 0

2Davidson (1994)[Theorems 21.6, 21.9, 21.10]. See also Newey (1991).
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for every π ∈ Π by stationarity and ergodicity (Assumption 9(ii)) and the moment bounds. Com-

bining these two results, we see that Davidson (1994), Theorem 21.9 applies, so

sup
π∈Π
|| ∂
∂ψ

R̂n(h, ψ0,n, π)−Dn(h, π)|| p−→ 0

for the non-stochastic function Dn(h, π) ≡ Dn(h, ψ0,n, π).

(b) Define D̃n(h, ψ, π) = Eγn

[
∂
∂ψ

∂
∂ψ′

(
εt(ψ, π)εt−h(ψ, π)

)]
and Zn(h, ψ, π) =

∂
∂ψ

∂
∂ψ′
R̂n(h, ψ, π)− D̃n(h, ψ0,n, π).

Using differentiability (Assumption 9(ii,iii)) of Zn(h, ψ, π), define

Bn = sup
π∈Π

sup
ψ∈Ψ(π)

|| ∂
∂θ
Zn(h, ψ, π)||.

By Assumption 9(iv), Bn = Op(1). Further, by an application of the MVT,

||Zn(h, ψ, π)−Zn(h, ψ′, π′)|| ≤ Bn||θ − θ′|| a.s.

Then by following Davidson (1994), Theorem 21.10, we see that {Zn(h, ψ, π)} is stochastically

equicontinuous. Next, observe that

||Zn(h, ψ, π)|| p−→ 0

by stationarity and ergodicity (Assumption 9(ii)) and the moment bounds. Combining these two

results, we see that Davidson (1994), Theorem 21.9 applies, so

sup
π∈Π

sup
ψ∈Ψn(π)

||Zn(h, ψ, π)|| p−→ 0.

for an open set Ψ0,n(π) containing ψ0,n and for the non-stochastic function D̃n(h, ψ, π) that is

continuous at ψ0,n. Finally, we combine the previous result with |ψ∗0,n − ψ0,n|
p−→ 0 and apply
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Davidson (1994), Theorem 21.6 to yield

sup
π∈Π
||Zn(h, ψ∗0,n, π)|| p−→ 0.

Lemma A.2.6. Under {γn} ∈ Γ(γ0,∞, ω0) and Assumptions 6 and 10, for some θ∗n st |θ∗n− θn|
p−→

0, we have that

(a) || ∂
∂θ
R̂n(h, θn)−Dθn(h)|| = op(1)

(b) || ∂
∂θ

∂
∂θ′
R̂n(h, θ∗n)− D̃θn(h)|| = op(1)

Proof of Lemma A.2.6. The proof proceeds similarly to that of Lemma A.2.5(b).
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APPENDIX B

APPENDIX FOR TESTING MANY ZERO RESTRICTIONS UNDER MIXED
IDENTIFICATION STRENGTH

B.1 Appendix: Notation

The framework utilized here is based upon that developed in Andrews and Cheng (2012a) and

Cheng (2015); hence we find it convenient to borrow their notation. This section is meant to be

a reference for the notation found throughout the remainder of the paper. Readers familiar with

Cheng (2015) may wish to skip this section and return if needed.

The parameter vector θ ∈ Θ∗ can be partitioned into three subvectors θ = (β′, ζ ′, π′)′ where the

parameters β and ζ are always strongly identified, and the identification strength of π is determined

by β. ζ does not affect the identification of π or β. For the observations {Wt = (Y ′t , X
′
t, Z

′
t)
′ :

t ≤ n}, {Zt} are the variables associated with parameter ζ which are not associated with β or π.

The variables Xt are associated with β and π but not with ζ . For any θ ∈ Θ∗, we denote by Fγ

the distribution of {Wt : t ≤ n} and Eγ its expectation, where γ = (θ, φ) ∈ Γ and φ ∈ Φ∗ is a

possibly infinite dimensional nuisance parameter such that the distribution is fully characterized by

γ. In the framework of Andrews and Cheng (2012a), all elements of π are only allowed to exhibit

a single identification strength that is determined by the value of β.

This can be demonstrated with a simple example in which we estimate scalar parameters (β, π)

from the nonlinear function Yt = βg(Xt, π) + εt for some smooth non-linear function g. It is

well known that when β 6= 0, π can be (strongly) identified, and when β = 0, π cannot be

identified. In order to develop a unifying testing framework, Andrews and Cheng (2012a) utilize

a thought experiment which can be characterized with the notion of drifting sequences of true

parameters. Let β = βn be a sequence of true parameters that are drifting to 0, the point that

induces identification failure. Then the strength of identification of π is categorized by the speed

at which βn → 0. When
√
nβn → ∞, π is characterized as being semi-strongly identified, and

when
√
nβn → b ∈ (0,∞), we say π is weakly identified. In the latter case our estimator π̂n is not

consistent for the true π0, and converges instead to a random variable. These drifting sequences

are described in greater detail below.
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While this setup allows for uniform inference within the parameter space, missing from their

framework is the ability to account for identification strengths that differ across elements of π.

Cheng (2015) augments this theory specifically for the additive non-linear model to allow for

mixed identification strength by pairing subvectors of β with subvectors of π, and allowing the

subvectors of β to drift to zero at differing rates. To allow for uniformity over γ ∈ Γ, all true

parameters are indexed by the sample size n. That is, the true γn = (θ′n, φ
′
n)′ where

θn = (β′n, ζ
′
n, π

′
n)′

with βn = (β′1,n, . . . , β
′
p,n)′ and πn = (π′1,n, . . . , π

′
p,n)′. These parameters drift to the limiting values

θn → θ0 = (β′0, ζ
′
0, π

′
0)′ ∈ Θ∗ and γn → γ0 ∈ Γ.

B.1.1 Drifting Sequences

In this framework, the identification strength of πi, i = 1, . . . , p, is determined by the rate at

which ||βi,n|| converges to 0 as n → ∞, with πi being strongly identified only if βi,n → βi 6= 0.

In the case that βi,0 = 0, the speed at which βi,n → βi,0 = 0 affects the asymptotic analysis. In

particular, when ||βi,n|| → 0 fast enough, given by case (i) below, we say the parameter πi,0 is

weakly identified. In this case, the estimator π̂i,n is not consistent. Hence, following Cheng (2015),

we divide the space of drifting sequences into three identification categories of πi:

(i) Weak Identification: βi,n → 0 with n1/2βi,n → bi ∈ Rdβi

(ii) Semi-Strong Identification: βi,n → 0 with n1/2||βi,n|| → ∞

(iii) Strong Identification: βi,n → βi 6= 0.

Observe that the case βi,n = 0 ∀n is allowed under case (i); hence this case includes non-

identification. The category (ii) of semi-strong identification is necessary for uniform results in

Cheng’s (2015) work. She groups subvectors of π by the identification category above and the rate

of convergence to zero for subvectors in the semi-strong identification category. This grouping

allows a convenient inductive argument to be used to prove estimation results.
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B.1.2 Grouping Notation

To facilitate sequential analysis, we follow the notation in Cheng (2015). Let ||βi|| denote the

norm of vector βi. We group subvectors of β and their associated pairings in π with the following

procedure.

(i) All ||βj,n|| that have non-zero limit are put in the first group. If all ||βj,n|| have zero limits,

the first group is empty.

(ii) All ||βj,n|| that are O(n−1/2) are put in the last group.

(iii) For those that converge to 0 but at a rate slower than n−1/2, members in group k converge to

0 slower than members in group k′ for any k′ > k and members in the same group converge

to 0 at the same rate.

The first group is associated with strong identification, the last group is associated with weak

identification, and the middle groups are associated with semi-strong identification, ordered by the

rate of convergence. Note that the group index k is a property associated with the drifting sequence

{βj,n : n ≥ 1}. Therefore the group index k does not change with the sample size n. See Cheng

(2015) for details.

Next, suppose there are K groups and βk1 , . . . , βkpk are the elements in group k. Let lk =

{k1, . . . , kpk} denote the indices for group k. Use the subscript lk to denote a sub-vector associated

with group k:

βlk = (β′k1
, . . . , β′kpk

)′ ∈ Rdk

and πlk = (π′k1
, . . . , π′kpk

)′ ∈ Rdπlk .

βlk,n denotes the true value of βlk when the sample size is n and βlk,0 denotes its limit. In particular,

the grouping rule implies that ||βlk′ ,n|| = o(||βlk,n||) for k′ > k between groups and ||βj′,n||

converges at the same rate as ||βj,n|| for any j, j′ ∈ lk and k = 1, . . . , K − 1. In the presence of

weak identification, βlk,n = O(n−1/2) for k = K. If all regressors are in the semi-strong or strong

identification category, then we denote lK = ∅.
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Finally, we describe one more partition of the vectors β and π based on the grouping notation

above that will be used to sequentially analyze the limiting behavior of the estimators.

Consider π(i),lk , and denote π(i),k− as the elements of π in the previous groups l1, . . . , lk−1 and

π(i),k+ as the elements of π in the subsequent groups lk+1, . . . , lK .

πk− = (π′l1 , . . . , π
′
lk−1

)′ and πk+ = (π′lk+1
, . . . , π′lK )′.

Observe that π = (π′k− , π
′
lk
, π′k+)′, and that the identification strength of these subvectors are in

decreasing order by definition. The same notation will apply to β, where we can note that the

subvectors in β = (β′k− , β
′
lk
, β′k+)′ have smaller magnitude by definition.

It is important to note that πl1 is strongly identified. All strongly identified elements of π are

included in this group in order to analyze them together with the strongly identified parameters β

and ζ . The semi-strongly identified and weakly-identified elements of π are analyzed using the

sequential procedure outlined in Cheng (2015). If no elements of π are strongly identified, l1 = ∅

and πl1 disappears.

B.1.3 Concentrated Criterion Functions

The least squares estimator θ̂n minimizes Qn(θ) over θ ∈ Θ, where Θ = B × Z × Π. B =

×pj=1Bj where Bj for j = 1, . . . , p are compact sets, as are Z and Π. We assume all true values

and parsimonious model counterparts in Θ∗ are in the interior of the optimization space Θ.

Proof of the consistency of the strongly and semi-strongly identified components of the esti-

mator follows from sequential analysis in order of decreasing identification strength. In particular,

we sequentially concentrate out parameters and analyze the concentrated criterion function

Qc
n(πlk , πk+) = Qn(ψ̂k−(πlk , πk+), πlk , πk+)

where ψk− = (β′, ζ ′, π′k−)′ collects the parameters that have been concentrated out, and the true

values of these parameters are denoted with the additional subscripts ψk−,n = (β′n, ζ
′
n, π

′
k−,n)′ and

ψk−,0 = (β′0, ζ
′
0, π

′
k−,0)′ where the latter gives the limit of the drifting sequence: ψk−,n → ψk−,0.
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Due to the mixed identification strength along differing subvectors of π, it becomes necessary

to evaluate expansions around the points of sequential identification failure, β0
lk

= 0 and β0
k+ = 0,

rather than the true values βlk,n = 0 and βk+,n = 0 as is commonly done Andrews and Cheng’s

(2012a). We use the superscript 0 notation to define

ψ0
k−,n = (β′k−,n, β

0′
lk
, β0′

k+ , ζ ′n, π
′
k−,n)′

to be the parameter vector consisting of the concentrated out parameters evaluated at the point

of sequential identification failure β0
lk

= 0 and β0
k+ = 0. Observe that the difference ψk−,n −

ψ0
k−,n = (0′, βlk,n, βk+,n, 0

′, 0′)′. This is done so that under our basic assumptions the centering

term Qn(ψ0
k−,n, πlk , πk+) does not depend on (π′lk , π

′
k+)′.

B.2 Appendix: Limit Theory for Models with Mixed Identification Strength

We assume that the following assumptions hold throughout this section.

Assumption A.1. The observations {Wt = (Y ′t , X
′
t, Z

′
t)
′ : t ≤ n} are strictly stationary as are

{εt}. {Wt} is strongly mixing with mixing coefficient α(j) such that
∑∞

j=1 α(j)δ/(2+δ) < ∞ for

some δ > 0.

Assumption A.2. The true value θ∗ belongs to the set Θ∗ = B∗1 × · · · × B∗p × Z∗ × Π∗ where B∗j

is compact and includes 0 for each j. Π∗ and Z∗ are compact. For any θ ∈ Θ∗, the distribution

of {Wt} is given by Fγ , where γ = (θ′, φ′)′ ∈ Γ, and φ ∈ Φ∗ is an possibly infinite dimensional

nuisance parameter that fully characterizes the distribution. Φ∗ is a compact metric space with a

metric that induces weak convergence on bivariate distributions (Wt,Wt+m) for every t,m ≥ 1.

Assumption A.3. The estimator θ̂n minimizes the criterion function Qn(θ) ≡ Qn(θ;Wt) =

1
n

∑n
t=1mt(θ;Wt) over θ ∈ Θ = B1 × · · · × Bp × Z × Π where Bj,Z,Π are compact for ev-

ery j and Θ∗ is contained in the interior of Θ.

Assumption A.4. For every Bj there is a Πj = ⊗qji=1Πi such that mt(θ;w) does not depend upon

πj ∈ Πj iff βj = 0. βi for i 6= j does not affect the identification of πj . ζ does not affect the

identification of β or π, and the identification of ζ is not affected by β or π.
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Assumption A.5. Denote Eγ0 as expectation taken under true parameter γ0.

1. if lK = ∅, then Eγ0(mt(θ;Wt)) is minimized uniquely by θ = θ∗ ∈ Θ∗.

2. if lK 6= ∅, then Eγ0(mt(ψK− , πK ;Wt)) is minimized uniquely by ψK− = ψ∗K− ∈ Ψ∗K− for

every πK ∈ ΠK .

Assumption A.6. The function mt(θ; ·) is measurable with respect to σ(Wt), the sigma field gen-

erated by {Wt}, for every θ ∈ Θ. Further, mt(θ) is three times continuously differentiable, and for

some δ > 0

1. supθ∈ΘEγ0 |mt(θ)|2+δ <∞

2. supθ∈Θ lim
n→∞

Eγn|
[
B(βK−)−1∇ψK−

mt(θ)
]
j
|2+δ <∞

3. supθ∈Θ lim
n→∞

Eγn|
[
B(βK−)−1

(
∇2
ψK−

mt(θ)
)
B(βK−)−1

]
i,j
|2+δ <∞

4. supθ∈Θ lim
n→∞

Eγn|
[

∂
∂ψ′

k−
vec
(
B(βK−)−1∇2

ψK−
mt(θ)B(βK−)−1

)]
i,j
|2+δ <∞

where [A]i,j denotes the i, jth element of the matrix A.

Additional Assumptions:

Assumption A.7. i) For every k = 1, . . . , K,

Kk(ψk− , πlk , πk+ ; γ0) =
∂

∂β′0
Eγ0∇ψk−

mt(θ)

exists for every (θ, γ0) ∈ Θη × Γ0, where θ = (ψk− , πlk , πk+).

ii) For every k = 1, . . . , K, Kk(θ; γ) is continuous at (ψ0
k− , πlk , πk+ ; γ0) uniformly over

πlk , πk+ ∈ Πlk × Πk+ for every γ0 ∈ Γ such that ψ0
k− is a subvector of γ0.

Assumption A.8. For each k, λmin(Hk(πlk , πk+ ; γ0)) ≥ ε for some ε > 0.

Assumption A.9. i) If lK is empty, then λmin(Ωθ(γ0)) ≥ ε for some ε > 0 and every i.
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ii) If lK is not empty, then each sample path of the process χ(πlK ) is continuous a.s. and mini-

mized uniquely with probability 1. Denote the minimizer by π∗lK .

i) For every k = 1, . . . , K, Kk(ψk− , πlk , πk+ ; γ0) exists for every (θ, γ0) ∈ Θη × Γ0, where

θ = (ψk− , πlk , πk+).

ii) For each k = 1, . . . , K,Kk(θ; γ) is continuous at (ψ0
k− , πlk , πk+ ; γ0) uniformly over πlk , πk+ ∈

Πlk × Πk+ for every γ0 ∈ Γ such that ψ0
k− is a subvector of γ0.

iii) λmin(Hk(πlk , π
+
k ); γ0) ≥ ε for some ε > 0.

iv) Let G(πlK ; γ0) be a zero mean Gaussian process with covariance kernel Ω(πlK , π̃lK ; γ0). Then

λmin(Ω(πlK , π̃lK ; γ0)) ≥ ε for some ε > 0.

v) Define the process

χ(πlK ) = −1

2

(
KK(πlK ; γ0)blK + G(πlK ; γ0)

)′[
HK(πlK ; γ0)

]−1(
KK(πlK ; γ0)blK + G(πlK ; γ0)

)
.

Each sample path of the process χ(πlK ) is minimized uniquely with probability 1.

Lemma B.2.1 (Consistency for Strong Identification Groups). Suppose Assumptions A.1-A.6 hold.

Then under γn → γ0,

sup
π+

1 ∈Π+
1

||ζ̂(π+
1 )− ζn||

p−→ 0

sup
π+

1 ∈Π+
1

||β̂(π+
1 )− βn||

p−→ 0

sup
π+

1 ∈Π+
1

||π̂l1(π+
1 )− πl1,n||

p−→ 0

Proof of Lemma B.2.1. First, observe that a ULLN holds forQn(θ), since supθ |Qn(θ)−Q(θ)| p−→ 0

by B.3.1. Next, denote the true sequence ψn → ψ0 and Q(θ) = Q(ψ, πl1|π+
1 ) for fixed π+

1 .

By assumption, Q(θ) is uniquely minimized by (ψ′0, π
′
l1,0

)′ for any fixed π+
1 . Observe that since
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βlk,0 = 0 for every k > 1, Q(ψ0, πl1,0|π+
1 ) does not depend upon π+

1 . Finally, we appeal to Lemma

3.1 in Andrews and Cheng (2012a) for the extension to uniform consistency.

Lemma B.2.2 (Consistency for Semi-Strong Identification Groups). Suppose Assumptions A.1-A.9

hold. Then under γn → γ0, for k = 2, . . . , K − 1,

(a) the concentrated sample criterion function satisfies

||βlk,n||−2
(
Qc
n(πlk , πk+)−Qn(ψ0

k−,n)
)

p−→ −1

2
(ω′k,0, 0

′
dk+

)Kk(πlk , πk+ ; γ0)′[Hk(πlk , πk+ ; γ0)]−1Kk(πlk , πk+ ; γ0)(ω′k,0, 0
′
dk+

)′,

(B.1)

where ωk,0 = limn→∞ βlk,n/||βlk,n|| is the angle parameter

(b) the estimator of πlk,n satisfies

sup
πk+∈Πk+

||π̂lk(πk+)− πlk,n||
p−→ 0

(c) the estimator of ψk− = (β′(i), ζ
′
(i), π

′
l1
, . . . , π′lk−1

)′ satisfies

||βlk,n||−1



β̂k−(πk+)− βk−,n

β̂lk(πk+)− βlk,n

β̂k+(πk+)

ζ̂(i) − ζn

B∗(βk−,n)(π̂k−(πk+)− πk−,n)


p−→ 0,

uniformly over πk+ ∈ Πk+ where B∗(βk−,n) = diag{(1dπl1 ||βl1||, . . . , 1dπlk−1
||βlk−1

||)′}.

Proof of Lemma B.2.2. The proof follows by an inductive argument.

1. Observe (b) and (c) hold for k = 1 by Lemma B.2.1.

2. Let Lemma B.2.2 hold for k − 1. We will show it holds for k.
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a) i) We will first use a second order expansion of Qn(ψ̂k−(πlk , πk+), πlk , πk+) around

Qn(ψ0
k−,n). This will imply the LHS is minimized by π̂lk(πk+), since Qn(ψ0

k−,n)

does not depend upon πlk or πk+ .

ii) We will then appeal to ULLNs developed in the appendix to show convergence of

the components of the expansion.

b) i) Proof of part (b) follows from a simple observation and the argmax continuity theo-

rem. Observe that the left hand side of (a) is minimized by π̂lk(πk+)

ii) The right hand side of (a) can be shown to be minimized at πlk = πlk,0 by a matrix

Cauchy-Schwarz inequality.

iii) Finally, invoke the argmax continuity theorem to arrive at the result.

c) Part (c) follows from two mean value expansions of the first order condition and score

function paired with the refined rate derived in part (a).

Step 2 utilizes the following expansions of the criterion function and its derivative about the

point of sequential identification failure.

A second order mean value expansion of the criterion function about the point of sequential

identification failure yields for some ˜̃ψk−,n between ψ̂k−(πlk , πk+) and ψ0
k−,n,

Qn(ψ̂k−(πlk , πk+), πlk , πk+)−Qn(ψ0
k−,n) (B.2)

= ∇ψk−
Qn(ψ0

k−,n, πlk , πk+)′(ψ̂k−(πlk , πk+)− ψ0
k−,n)

+
1

2
(ψ̂k−(πlk , πk+)− ψ0

k−,n)′∇2
ψk−

Qn( ˜̃ψk−,n, πlk , πk+)(ψ̂k−(πlk , πk+)− ψ0
k−,n)

Consider the first order condition from the optimization problem, and use the MVT to see that

for some ψ̃k−,n between ψ̂k−(πlk , πk+) and ψ0
k−,n,

0 = ∇ψk−
Qn(ψ̂k−(πlk , πk+), πlk , πk+)

= ∇ψk−
Qn(ψ0

k−,n, πlk , πk+) +∇2
ψk−

Qn(ψ̃k−,n, πlk , πk+)(ψ̂k−(πlk , πk+)− ψ0
k−,n)
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which implies

ψ̂k−(πlk , πk+)− ψ0
k−,n = −[∇2

ψk−
Qn(ψ̃k−,n, πlk , πk+)]−1∇ψk−

Qn(ψ0
k−,n, πlk , πk+) (B.3)

Finally, expansion about the point of sequential identification failure in expansion (ii) induces

a bias, so we use the following mean value expansion to account for this bias.

∇ψk−
Qn(ψ0

k−,n, πlk , πk+)

= Eγn
[
∇ψk−

Qn(ψ0
k−,n, πlk , πk+)

]
+∇ψk−

Qn(ψ0
k−,n, πlk , πk+)− Eγn

[
∇ψk−

Qn(ψ0
k−,n, πlk , πk+)

]
= Eγ0

k−,n

[
∇ψk−

Qn(ψ0
k−,n, πlk , πk+)

]
+

∂

∂(β′lk,n, β
′
k+)

Eγ̃n
[
∇ψk−

Qn(ψ0
k−,n, πlk , πk+)

]
(β′lk,n, β

′
k+)′

+∇ψk−
Qn(ψ0

k−,n, πlk , πk+)− Eγn
[
∇ψk−

Qn(ψ0
k−,n, πlk , πk+)

]
= Kk,n(ψ0

k−,n, πlk , πk+ ; γ̃n) · (β′lk,n, β
′
k+)′ + Gk,n(πlk , πk+) (B.4)

where Kk,n(ψ0
k−,n, πlk , πk+ ; γ̃n) = ∂

∂(β′lk,n
,β′
k+ )
Eγ̃n
[
∇ψk−

Qn(ψ0
k−,n, πlk , πk+)

]
for some γ̃n between

γn and γ0
k−,n, and Gk,n(πlk , πk+) = ∇ψk−

Qn(ψ0
k−,n, πlk , πk+) − Eγn

[
∇ψk−

Qn(ψ0
k−,n, πlk , πk+)

]
.

Note that Eγ0
k−,n

[
∇ψk−

Qn(ψ0
k−,n, πlk , πk+)

]
= 0 by definition (see Lemmas 9.1, 9.2 in Andrews

and Cheng (2012b)).

Observe that by differentiability of Qn, the definition of the estimator ψ̂k−(πlk , πk+), the MVT,

and combining the above three expansions B.2, B.3, and B.4 we have

Qn(ψ̂k−(πlk , πk+), πlk , πk+)−Qn(ψ0
k−,n)

= −∇ψk−
Qn(ψ0

k−,n, πlk , πk+)′[∇2
ψk−

Qn(ψ̃k−,n, πlk , πk+)]−1∇ψk−
Qn(ψ0

k−,n, πlk , πk+)

+
1

2
∇ψk−

Qn(ψ0
k−,n, πlk , πk+)′[∇2

ψk−
Qn(ψ̃k−,n, πlk , πk+)]−1∇2

ψk−
Qn( ˜̃ψk−,n, πlk , πk+)

× [∇2
ψk−

Qn(ψ̃k−,n, πlk , πk+)]−1∇ψk−
Qn(ψ0

k−,n, πlk , πk+) (B.5)
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for some ψ̃k−,n and ˜̃ψk−,n, both between ψ̂k−(πlk , πk+) and ψ0
k−,n, and where

∇ψk−
Qn(ψ0

k−,n, πlk , πk+) = Kk,n(πlk , πk+ ; γ̃n)(β′lk,n, β
′
k+)′ + Gk,n(πlk , πk+)

Kk,n(πlk , πk+ ; γ̃n) ≡ Kk,n(ψ0
k−,n, πlk , πk+ ; γ̃n)

=
∂

∂(β′lk,n, β
′
k+)

Eγ̃n
[
∇ψk−

Qn(ψ0
k−,n, πlk , πk+)

]
=

1

n

n∑
t=1

∂

∂(β′lk,n, β
′
k+)

Eγ̃n
[
∇ψk−

mt(ψ
0
k−,n, πlk , πk+)

]
Gk,n(πlk , πk+) = ∇ψk−

Qn(ψ0
k−,n, πlk , πk+)− Eγn

[
∇ψk−

Qn(ψ0
k−,n, πlk , πk+)

]
=

1

n

n∑
t=1

{
∇ψk−

mt(ψ
0
k−,n, πlk , πk+)

− Eγn
[
∇ψk−

mt(ψ
0
k−,n, πlk , πk+)

]}

and

∇2
ψk−

Qn(ψ̃k−,n, πlk , πk+) =
1

n

n∑
t=1

∇2
ψk−

mt(ψ̃k−,n, πlk , πk+)

Hence, we need to establish ULLNs for Kk,n(πlk , πk+ ; γ̃n), Gk,n(πlk , πk+), and

∇2
ψk−

Qn(ψ̃k−,n, πlk , πk+), which are established in the supporting lemmas section. In particular

recall that ψk− = (β′, ζ ′, π′k−)′, πk− = (π′l1 , . . . , π
′
lk−1

)′, and that πlk for k > 1 does not affect Q

in the limit, resulting in a hessian ∇2
ψk−

Qn that approaches singularity as n → ∞. It is necessary

then to normalize the columns of the hessian corresponding πlk for k > 1. Define B(βk−) =

diag{(1dβ+dζ , 1dπl1
||βl1||, . . . , 1dπlk−1

||βlk−1
||)′}

Lemmas B.3.2, B.3.3, and B.3.4 show that for each k = 1, . . . , K − 1

sup
πlk ,πk+

||B(βk−,n)−1∇2
ψk−

Qn(ψ̃k−,n, πlk , πk+)B(βk−,n)−1 −Hk(πlk , πk+ ; γ0)|| p−→ 0

sup
πlk ,πk+

||B(βk−,n)−1Kk,n(πlk , πk+ ; γ̃n)−Kk(πlk , πk+ ; γ0)|| → 0

sup
πlk ,πk+

||||βlk,n||−1B(βk−,n)−1Gk,n(πlk , πk+)|| p−→ 0
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Recall that ωk,0 = limn→∞ βlk,n/||βlk,n|| for k < K, and βlj ,n = o(||βlk,n||) for every j > k.

Normalize B.5 by ||βlk,n||−2, multiplying by Idψ
k−

= B(βk−,n)−1B(βk−,n), and utilize the results

from Lemmas B.3.2, B.3.3, and B.3.4 in equation B.5 to establish the result B.1:

||βlk,n||−2
(
Qc
n(πlk , πk+)−Qn(ψ0

k−,n)
)

p−→ −1

2
(ω′k,0, 0

′
dk+

)Kk(πlk , πk+ ; γ0)′[Hk(πlk , πk+ ; γ0)]−1Kk(πlk , πk+ ; γ0)(ω′k,0, 0
′
dk+

)′,

Notice that the notation differs from that used in Cheng (2015). In particular, for the

specific additive nonlinear model studied in Cheng (2015), there is some Ω̃(πlk,1, πlk,2|πk+)

such that Hk(πlk , πk+ ; γ0) = Ω̃(πlk , πlk |πk+) and K̃k(πlk , πk+ ; γ0) = Ω̃(πlk , πlk,0|πk+),

where K̃k(πlk , πk+ ; γ0) = ∂
∂β′0
Eγ0

[
∇ψk−

mt(ψ
0
k−,n, πlk , πk+)

]
, so that our Kk(πlk , πk+ ; γ0) =

K̃k(πlk , πk+ ; γ0)Sk where Sk is a selection matrix that selects the columns corresponding to

(β′lk,0, β
′
k+,0)′. Our results generalize those in Cheng (2015) to a broader class of models.

For part (b), observe that the left hand side of (a) B.1 is minimized by π̂lk(πk+). That the

right hand side of (a) B.1 is minimized at πlk = πlk,0 can be shown by a matrix Cauchy-Schwarz

inequality (Tripathi, 1999). To establish the result, one must then invoke the argmax continuous

mapping theorem (van der Vaart and Wellner, 1996).

Finally, for part (c), consider the expansions B.3 and B.4 which are related to the first order

condition. Given the result in part (b), the expansion about β0
lk

= 0, rather than the true value βlk,n,

is not necessary, so replace β0
lk

= 0 by the true value βlk,n in the expansion B.3 to yield

ψ̂k−(πlk , πk+)− ψ0
k,n = −[∇2

ψk−
Qn(ψ̃k−,n, πlk , πk+)]−1∇ψk−

Qn(ψ0
k,n, πlk , πk+)

where ψ0
k,n = (β′k−,n, β

′
lk,n
, β0′

k+ , ζ ′n, π
′
k−,n)′. This additionally alters B.4 to

∇ψk−
Qn(ψ0

k,n, πlk , πk+) = Eγn
[
∇ψk−

Qn(ψ0
k,n, πlk , πk+)

]
+∇ψk−

Qn(ψ0
k,n, πlk , πk+)− Eγn

[
∇ψk−

Qn(ψ0
k,n, πlk , πk+)

]
= Eγ0

k,n

[
∇ψk−

Qn(ψ0
k,n, πlk , πk+)

]
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+
∂

∂βk+,n

Eγ̃n
[
∇ψk−

Qn(ψ0
k,n, πlk , πk+)

]
βk+,n

+∇ψk−
Qn(ψ0

k,n, πlk , πk+)− Eγn
[
∇ψk−

Qn(ψ0
k,n, πlk , πk+)

]
= Kk,n(ψ0

k,n, πlk , πk+ ; γ̃n)βk+,n + Gk+,n(πlk , πk+)

Recall that B(βk−,n)−1Kk,n(ψ0
k,n, πlk , πk+ ; γ̃n) has a non-zero, finite limit, but that βlj ,n =

o(||βlk,n||) for every j > k. Substitute the previous equation and normalize by ||βlk ||−1B(βk−,n)

to see that

||βlk ||−1B(βk−,n)
(
ψ̂k−(πlk , πk+)− ψ0

k,n

)
(B.6)

= −[B(βk−,n)−1∇2
ψk−

Qn(ψ̃k−,n, πlk , πk+)B(βk−,n)−1]−1

× ||βlk ||−1B(βk−,n)−1
(
Kk,n(ψ0

k−,n, πlk , πk+ ; γ̃n)βk+,n + Gk+,n(πlk , πk+)
)
.

Paired with the result from part (b), recall that the first quantity on the right hand side has a non-

zero limit uniformly in probability, but the second quantity converges uniformly in probability to

zero. This establishes the result in part (c).

Theorem B.2.3. Let Assumptions A.1 - A.9 hold. Under γn → γ0,

a) If lK 6= ∅, where lK indexes the weakly identified subvector of π, then

i)

n
(
Qc
n(πlk)−Qn(ψ0

K,n, πlk)
)
⇒ χ(πlK ) (B.7)

ii)

n1/2B(βK−,n)
(
ψ̂K− − ψK−,n

)
π̂lK

 d−→

τ(π∗lK )− SlKblK

π∗lK

 (B.8)

where SlK is the selection matrix that selects the columns corresponding to βlk .
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b) if lK = ∅, then no parameters are weakly identified, so βK−,n = βn and

n1/2B(βn)(θ̂ − θn)
d−→ N(0,Σ(π0, ω0))

Proof of B.2.3. Steps:

1. Normalize the altered for k = K B.4 by n1/2 and show ULLN + weak convergence.

2. Use Lemma B.3.3 for k = K.

3. Use the FOC expansion together with the two previous steps to get the weak convergence

result in (i).

4. Use the criterion expansion from Lemma B.2.2, normalize by n and apply ULLN and weak

convergence result

5. Recognize that π̂K minimizes the left hand side and π∗K minimizes the right hand side by

definition. Apply the argmax CMT to obtain π̂lK
d−→ π∗K .

6. Recognize that ψ̂K−(π̂K) = ψ̂K− , add and subtract ψ0
K−,n in n1/2B(βK−,n)

(
ψ̂K− − ψK−,n

)
,

and apply the CMT to arrive at the joint convergence result in (ii).

7. Proof of part (b) is standard.

We utilize the same expansions conducted in the proof of Lemma B.2.2, and we reference these

expansions without explicitly rederiving them in this proof for conciseness. Consider the first order

condition and expansion in B.3 and B.4 for the case k = K and recall that K+ = ∅, as group K is

the last group.

ψ̂K−(πlK )− ψ0
K−,n = −[∇2

ψK−
Qn(ψ̃K−,n, πlK )]−1∇ψK−

Qn(ψ0
K−,n, πlK ) (B.9)

with

∇ψK−
Qn(ψ0

K−,n, πlK ) = KK,n(ψ0
K−,n, πlK ; γ̃n) · βlK ,n + GK,n(πlK ). (B.10)
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Substitute these into B.2 for k = K to arrive at equation B.5 for k = K, rewritten here:

Qn(ψ̂K−(πlK ), πlK )−Qn(ψ0
K−,n)

= −∇ψK−
Qn(ψ0

K−,n, πlK )′[∇2
ψK−

Qn(ψ̃K−,n, πlK )]−1∇ψK−
Qn(ψ0

K−,n, πlK )

+
1

2
∇ψK−

Qn(ψ0
K−,n, πlK )′[∇2

ψK−
Qn(ψ̃K−,n, πlK )]−1∇2

ψK−
Qn( ˜̃ψK−,n, πlK )

× [∇2
ψK−

Qn(ψ̃K−,n, πlK )]−1∇ψK−
Qn(ψ0

K−,n, πlK ) (B.11)

for some ψ̃K−,n and ˜̃ψK−,n, both between ψ̂K−(πlK ) and ψ0
K−,n.

Recall that βlK ,nn
1/2 → blK , and Lemmas B.3.2, B.3.3, and B.3.5 imply

sup
πlK

||B(βK−,n)−1∇2
ψK−

Qn(ψ̃K−,n, πlK )B(βK−,n)−1 −HK(πlK ; γ0)|| p−→ 0

sup
πlK

||B(βK−,n)−1KK,n(πlK ; γ̃n)−KK(πlK ; γ0)|| → 0

√
nB(βK−)−1GK,n(πlK )⇒ G(πlK ; γ0).

Normalize equation B.11, and apply the above results to arrive at B.7:

n
(
Qc
n(πlK )−Qn(ψ0

K,n, πlK )
)
⇒ χ(πlK )

where

χ(πlK ) = −1

2

(
KK(πlK ; γ0)blK + G(πlK ; γ0)

)′[
HK(πlK ; γ0)

]−1

×
(
KK(πlK ; γ0)blK + G(πlK ; γ0)

)
.

This establishes (a.i). To establish part (a.ii), observe that Qn(ψ0
K,n, πlk) does not depend upon

πlk by assumption, so the left hand side of B.7 is minimized by π̂lk by definition. Further, by

assumption, the right hand side is minimized by π∗lk . Apply the argmax CMT (van der Vaart and

Wellner, 1996) to see that π̂lk
d−→ π∗lk .

167



www.manaraa.com

The joint result B.8 follows by normalizing the first order condition in B.9-B.10 by n1/2B(βK−)

and application of the Lemmas B.3.2, B.3.3, and B.3.5 together with the CMT and the result that

n1/2B(βK−,n)
(
ψ̂K− − ψ0

K−,n

)
= n1/2B(βK−,n)

(
ψ̂K− − ψK−,n

)
+ n1/2B(βK−,n)

(
ψK−,n − ψ0

K−,n

)
= n1/2B(βK−,n)

(
ψ̂K− − ψK−,n

)
+ SkβlK .

This gives

n1/2B(βK−,n)
(
ψ̂K− − ψK−,n

)
π̂lK

 d−→

τ(π∗lK )− SlKblK

π∗lK

 (B.12)

where τ(πlK ) =
[
HK(πlK ; γ0)

]−1(
KK(πlK ; γ0)blK + G(πlK ; γ0)

)
, as desired.

Proof of part (b) is similar to that of (a) with simplifications including use of Lemma B.3.6 in

place of B.3.5, and so it is omitted.

Theorem B.2.4. Let the assumptions of Theorem B.2.3 hold. Under γn → γ0,

a) If lK 6= ∅, where lK indexes the weakly identified subvector of π, then

n1/2B(βn)

(ψ̂K− − ψK−,n)
π̂lK − πlK ,n

 d−→

 τ(π∗lK )− SlKblK

||τβK (π∗lK )||
(
π∗lK − πlK ,n

)
 (B.13)

where SlK is the selection matrix that selects the columns corresponding to β(i),lk .

b) if lk = ∅, then no parameters are weakly identified, so βK−,n = βn and

n1/2B(βn)(θ̂ − θn)
d−→ HK−1(γ0)−1Gθ(γ0) (B.14)

where Gθ(γ0) ∼ N(0,Ωθ(γ0)), and χθ(γ0) = −1
2
Gθ(γ0)′HK−1(γ0)−1Gθ(γ0).

Proof of Theorem B.2.4. The result follows directly from Theorem B.2.3 by the CMT, since
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n1/2β̂lK ,n(πlK )⇒ τβK (π(i),lK ) by part a of Theorem B.2.3.

B.3 Appendix: Supporting Lemmas and Proofs for the Estimator Limit Theory

Lemma B.3.1. We have that supθ |Qn(θ)−Q(θ)| p−→ 0 under the assumptions

i) Θ is compact

ii) mt(θ) is continuously differentiable

iii) supθ∗∈Θ∗ ||Eγ0

(
∂
∂θ
mt(θ

∗)
)
|| <∞

iv) for some δ > 0, supθ∗∈Θ∗ Eγ0|mt(θ
∗)|2+δ <∞

v) For every θ ∈ Θ, mt(θ) is strongly mixing with mixing coefficient αm such that∑∞
m=1 α

δ/(d+δ)
m <∞.

Proof of B.3.1. The result will follow from Davidson’s (1994) Theorem 21.9 or Newey’s (1991)

Theorem 2.1 if we show that |Qn(θ) − Q(θ)| p−→ 0 for every θ ∈ Θ and that Qn is stochastically

equicontinuous.

Observe that mt(θ) is strongly mixing and uniformly L2+δ bounded for some δ > 0, so

|Qn(θ)−Q(θ)| p−→ 0 by Corollary 19.6 in Davidson (1994).

Let θ, θ′ ∈ int(Θ) and use differentiability of Qn(θ) = 1
n

∑n
t=1 mt(θ) and the MVT to see that

|Qn(θ′)−Qn(θ)| =
k∑
i=1

1

n

n∑
t=1

∂

∂θi
mt(θ

∗) · (θi − θ′i) a.s.

≤ Bn · ||θ − θ′|| a.s.

where Bn ≡ supθ∗∈Θ∗ ||
(

1
n

∑n
t=1

∂
∂θ
mt(θ

∗)
)
||. By assumption, Bn = Op(1), so Qn is stochasti-

cally equicontinuous by Davidson’s (1994) Theorem 21.10.

Nest, we establish ULLNs forKk,n(πlk , πk+ ; γ̃n), Gk,n(πlk , πk+), and∇2
ψk−

Qn(ψ̃k−,n, πlk , πk+),

and a weak convergence result for Gk,n(πlk , πk+).
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Lemma B.3.2. Define Θη = {θ ∈ Θ : ||β|| < η} and Γ0 = {(aβ′, ζ ′, π′, φ′)′ : (β′, ζ ′, π′, φ′)′ ∈

Γ, ||β|| < η, and a ∈ [0, 1]} for some η > 0, and recall that ψ0
k− is the parameter vector

consisting of the concentrated out parameters evaluated at the point of sequential identification

failure β0
(i),lk

= 0 and β0
(i),k+ = 0. Let the following assumptions hold:

i) For every k = 1, . . . , K, Kk(ψk− , πlk , πk+ ; γ0) exists for every (θ, γ0) ∈ Θη × Γ0, where

θ = (ψk− , πlk , πk+).

ii) For each k = 1, . . . , K,Kk(θ; γ) is continuous at (ψ0
k− , πlk , πk+ ; γ0) uniformly over πlk , πk+ ∈

Πlk × Πk+ for every γ0 ∈ Γ such that ψ0
k− is a subvector of γ0.

iii) γ̃n → γ0

Then supπlk ,πk+
||B(βk−,n)−1Kk,n(πlk , πk+ ; γ̃n) − Kk(πlk , πk+ ; γ0)|| → 0 where

Kk,n(πlk , πk+ ; γ̃n) ≡ Kk,n(ψ0
k−,n, πlk , πk+ ; γ̃n) and Kk(ψk−,0, πlk , πk+ ; γ0) ≡ Kk(πlk , πk+ ; γ0).

Recall that ψ0
k−,n → ψk−,0 by definition. Note also that the assumptions are similar to Assump-

tion S4 in Andrews and Cheng (2013), which is related to Assumption C5 of Andrews and Cheng

(2012a).

Lemma B.3.3. For each k = 1, . . . , K, define

Hk(πlk , πk+ ; γ0) = lim
n→∞

Eγn [B(βk−,n)−1∇2
ψk−

mt(ψk−,0, πlk , πk+)B(βk−,n)−1]. Then under the

following assumptions, we have that supθ ||B(βk−,n)−1∇2
ψk−

Qn(ψ̃k−,n, πlk , πk+)B(βk−,n)−1 −

Hk(πlk , πk+ ; γ0)|| p−→ 0 for each k = 1, . . . , K.

i) Θ is compact

ii) ψ̃k−,n → ψk−,0 uniformly on Πlk × Πk+ for each k

iii) mt(θ) is three times continuously differentiable.

iv) Define θ− such that θ = (θ′−, π
′
K)′. Then supθ∗∈Θ∗ ||Eγ0

(
∂
∂θ−

vec
(
∇2
θ−
mt(θ

∗)
))
|| <∞

v) for every i, j and some δ > 0, supθ∗∈Θ∗ Eγ0|∇2
θ−
mi,j,t(θ

∗)|2+δ <∞
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vi) For every θ ∈ Θ, ∇2
θ−
mt(θ) is strongly mixing with mixing coefficient αm such that∑∞

m=1 α
δ/(d+δ)
m <∞.

By operating component wise on the matrix ∇2
ψk−

mt(θ), the proof follows exactly as in B.3.1

with the added step that involves appealing to Theorem 21.6 in Davidson (1994).

Lemma B.3.4. Under the conditions of Lemma B.3.5 and for k = 1, . . . , K − 1, we have

sup
πlk ,πk+

||||βlk,n||−1B(βk−,n)−1Gk,n(πlk , πk+)|| p−→ 0

Proof. Lemma B.3.5 implies that
√
nB(βk−)−1Gk,n(πlk , πk+) is Op(1) uniformly over Πlk ×Πk+ .

The result follows, since βlk = o(n1/2) for every k = 1, . . . , K − 1, so that βlk/
√
n = o(1).

Lemma B.3.5. Recall that for k = 1, . . . , K − 1

Gk,n(πlk , πk+) = ∇ψk−
Qn(ψ0

k−,n, πlk , πk+)− Eγn
[
∇ψk−

Qn(ψ0
k−,n, πlk , πk+)

]
=

1

n

n∑
t=1

{
∇ψk−

mt(ψ
0
k−,n, πlk , πk+)− Eγn

[
∇ψk−

mt(ψ
0
k−,n, πlk , πk+)

]}

and for k = K, the grouping k+ = ∅, so

GK,n(πlK ) =
1

n

n∑
t=1

{
∇ψK−

mt(ψ
0
K−,n, πlK )− Eγn

[
∇ψK−

mt(ψ
0
K−,n, πlK )

]}
.

Let G(πlK ; γ0) be a zero mean Gaussian process with covariance kernel Ω(πlK , π̃lK ; γ0). Under

γn → γ0 and the assumptions

i) {Wt} is strongly mixing with mixing coefficient α(j) such that
∑∞

j=1 α(j)δ/(2+δ) < ∞ for

some δ > 0.

ii) mt is measurable with respect to σ(Wt).

iii) Θ is compact

iv) mt(θ) is twice continuously differentiable
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v) supθ∈Θ lim
n→∞

Eγn||B(βK−,n)−1∇ψK−
mt(θ)||2+δ <∞

vi) supθ∈Θ lim
n→∞

Eγn||B(βK−,n)−1∇2
ψK−

mt(θ)B(βK−,n)−1||2+δ <∞

we have
√
nB(βK−,n)−1GK,n(πlK )⇒ G(πlK ; γ0).

Proof. In order to establish the result, we must show finite dimensional convergence and stochastic

equicontinuity (Andrews, 1994; Pollard, 1990). Stochastic equicontinuity follows from an appli-

cation of the MVT and the moment bounds in (v) as elaborated by Davidson’s (1994) Theorem

21.10. Finite dimensional convergence follows from appealing to an α-mixing CLT (Ibragimov,

1962) to establish convergence of a linear combination

(
√
nB(βK−,n)−1GK,n(πlK ,1), . . . ,

√
nB(βK−,n)−1GK,n(πlK ,J)),

and then applying the Cramér-Wold theorem.

Note that under the same conditions, we have that

√
nB(βk−,n)−1Gk,n(πlk , πk+)⇒ Gk(πlK , πk+ ; γ0)

for k = 1, . . . , K−1, as well; where Gk(πlK , πk+ ; γ0) is a Gaussian process with covariance kernel

Ωk(πlk , πk+ , π̃lk , π̃k+ ; γ0).

Lemma B.3.6. Recall that when lK is empty, ψk− = θ, so

1√
n

n∑
t=1

B(βK−,n)−1∇ψk−
mt(θ) =

1√
n

n∑
t=1

B(βn)−1∇θmt(θ).

Define Gθ(γ0) to be a Gaussian random variable with covariance matrix Ω(i),θ(γ0).

Under γn → γ0 and the assumptions

i) {Wt} is strongly mixing with mixing coefficient α(j) such that
∑∞

j=1 α(j)δ/(2+δ) < ∞ for

some δ > 0.

ii) mt is measurable with respect to σ(Wt).
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iii) Θ is compact

iv) mt(θ) is continuously differentiable

v) lim
n→∞

Eγn||B(βK−,n)−1∇ψK−
mt(θn)||2+δ <∞

we have 1√
n

∑n
t=1B(βn)−1∇θmt(θ)

d−→ Gθ(γ0).

Observe that the assumptions are weaker than those imposed in B.3.5 as stochastic equiconti-

nuity need not be established. The proof follows from application of an α-mixing CLT (Ibragimov,

1962).

B.4 Appendix: Proofs for the Parsimonious Estimator Limit Theory

First, we discuss the limit theory for the individual parsimonious estimators. The results in this

first subsection follow directly from results derived in Appendix B.2. After detailing this limiting

distribution, we prove in the following subsection the results for the joint limit theory described in

the paper.

B.4.1 Appendix: Pointwise Parsimonious Estimator Limit Theory

Assumption 23. i) If lK is empty, then λmin(Ω(i),θ(γ0)) ≥ ε for some ε > 0 and every i.

ii) If lK is not empty, then for every i, each sample path of the process χ(i)(π(i),lK ) is continuous

a.s. and minimized uniquely with probability 1. Denote the minimizer by π∗(i),lK .

Theorem B.4.1. Let Assumptions 1-7 and 18 hold. Under γn → γ0,

a) If lK 6= ∅, where lK indexes the weakly identified subvector of π(i), then

n
(
Qc

(i),n(π(i),lk)−Q(i),n(ψ0
(i),K,n, π(i),lk)

)
⇒ χ(i)(π(i),lK ; γ0) (B.15)n1/2B(β(i),K−,n)

(
ψ̂(i),K− − ψ(i),K−,n

)
π̂(i),lK

 d−→

τ(i)(π
∗
(i),lK

)− SlKb(i),lK

π∗(i),lK

 (B.16)

where SlK is the selection matrix that selects the columns corresponding to β(i),lk .
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b) if lK = ∅, then no parameters are weakly identified, so β(i),K−,n = β(i),n and

n
(
Q(i),n(θ̂(i))−Q(i),n(θ(i),n)

) d−→ χ(i),θ(γ0) (B.17)

n1/2B(β(i),n)(θ̂(i) − θ(i),n)
d−→ H(i),K−1(γ0)−1G(i),θ(γ0) (B.18)

where G(i),θ(γ0) ∼ N(0,Ω(i),θ(γ0)), and χ(i),θ(γ0) = −1
2
G(i),θ(γ0)′H(i),K−1(γ0)−1G(i),θ(γ0).

The proof of Theorem B.4.1 follows directly from Theorem B.2.3.

Theorem B.4.1 details the pointwise in i asymptotic distribution of the parsimonious estimators.

However, the max test combines estimators across parsimonious models, so it is necessary that we

analyze the joint limiting distribution of the parsimonious estimators. Theorem 3.4.3 provides this

joint asymptotic distribution.

A test directly based on the normalization described by Theorem B.4.1 will not always be

consistent when including weakly identified parameters. This is demonstrated in Lemma B.6.1

in the Appendix. The following theorem provides a more convenient normalization; however,

one should still note that use of this theorem does not provide consistency against all departures

from the null hypothesis. This is an ongoing issue with testing weakly identified parameters, and

current research focuses on correcting the size distortions that result from ignoring the effect of

weak identification.

Corollary B.4.2. Let Assumptions 1-7 and 18 hold. Under γn → γ0,

a) If lK 6= ∅, where lK indexes the weakly identified subvector of π(i), then

n1/2B(β(i),n)

(ψ̂(i),K− − ψ(i),K−,n

)
π̂(i),lK − Sπ(i),lK

πlK ,n

 d−→

 τ(i)(π
∗
(i),lK

)− SlKb(i),lK

||τ(i),βK (π∗(i),lK )||
(
π∗(i),lK − Sπ(i),lK

πlK ,n

)


(B.19)

where SlK is the selection matrix that selects the columns corresponding to β(i),lk , and Sπ(i),lK

selects the elements of the vector πlK ,n corresponding to π(i),lK ,n.
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b) if lk = ∅, then no parameters are weakly identified, so β(i),K−,n = β(i),n and

n1/2B(β(i),n)(θ̂(i) − θ(i),n)
d−→ H(i),K−1(γ0)−1G(i),θ(γ0) (B.20)

where G(i),θ(γ0) ∼ N(0,Ω(i),θ(γ0)), and χ(i),θ(γ0) = −1
2
G(i),θ(γ0)′H(i),K−1(γ0)−1G(i),θ(γ0).

The proof of Corollary B.4.2 follows directly from Theorem B.2.4.

At first, it seems that the centering term for the weakly identified parameters π(i),lK ,n instead of

Sπ(i),lK
πlK ,n. However, this term is arbitrary, since π̂(i),lK is not a consistent estimator. Later, we

will see that it is convenient to center the weakly identified parameters around the null hypothesized

values.

B.4.2 Appendix: Proofs for the Joint Parsimonious Estimator Limit Theory

Proof of Theorem 3.4.3. The proof of Theorem 3.4.3 follows from an argument nearly identical

to that in Theorem B.4.1 and B.4.2 where Lemma B.4.3 is used in place of Lemma B.3.5 and

Assumption 9 is used in place of Assumption 8.

Lemma B.4.3. Let l(i),K denote the index set lK for parsimonious model i, and recallm(i),t(θ(i)) =

mt([θ](i)) and

i) when l(i),K is not empty,

G(i),K,n(π(i),lK ) =
1

n

n∑
t=1

{
∇ψ(i),K−

m(i),t(ψ
0
(i),K−,n, π(i),lK )

− Eγn
[
∇ψ(i),K−

m(i),t(ψ
0
(i),K−,n, π(i),lK )

]}
.

ii) when l(i),K is empty, ψ(i),k− = θ(i), so

∇ψ(i),k−
m(i),t(θ(i)) = ∇θ(i)m(i),t(θ(i)).

Define G(i),θ,n = 1
n

∑n
t=1∇θ(i)m(i),t(θ(i),n).
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Define

G(i),n(π(i),lK ) =


G(i),K,n(π(i),lK ) if l(i),K 6= ∅

G(i),θ,n if l(i),K = ∅.

Let G(i)(π(i),lK ; γ0) be a zero mean Gaussian process with covariance kernel

Ω(i)(π(i),lK , π̃(i),lK ; γ0) and G(i),θ(γ0) be a Gaussian random variable with covariance matrix

Ω(i),θ(γ0).

Let γn → γ0 and the assumptions hold:

i) {Wt} is strongly mixing with mixing coefficient α(j) such that
∑∞

j=1 α(j)δ/(2+δ) < ∞ for

some δ > 0.

ii) mt is measurable with respect to σ{Wt}, the sigma field generated by {Wt}.

iii) Θ is compact

iv) mt(θ) is twice continuously differentiable

v) supθ∈Θ lim
n→∞

Eγn||B(βK−,n)−1∇ψK−
mt(θ)||2+δ <∞

vi) supθ∈Θ lim
n→∞

Eγn||B(βK−,n)−1∇2
ψK−

mt(θ)B(βK−,n)−1||2+δ <∞

Then

{√
nB(β(i),K−,n)−1G(i),n(π(i),lK ) : 1 ≤ i ≤ k̊

}
⇒
{
G̃(i)(π(i),lK ; γ0) : 1 ≤ i ≤ k̊

}
,

a zero mean Gaussian process with covariance kernel Ω(i,j)(π(i),l(i),K , π(j),l(j),K ; γ0) and where

G̃(i)(π(i),lK ; γ0) =


G(i)(π(i),lK ; γ0) if l(i),K 6= ∅

G(i),θ(γ0) if l(i),K = ∅.

Proof. Establishing the result requires showing finite dimensional convergence and stochastic

equicontinuity (Andrews, 1994; Pollard, 1990). Stochastic equicontinuity follows from the fact
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that the set {1, . . . , k̊} is compact and discrete, that each of the components G(i),K,n(π(i),lK ) are

stochastically equicontinuous as shown in Lemma B.3.5, and probability sub-additivity.

To establish finite dimensional convergence, let A = [ai]i=1,...,r̃ with each ai ∈ Rdθ(i) and with

A′A = 1, and consider the linear combination

r∑
i=1

√
nB(β(i),K−,n)−1

s∑
m=1

a′iG(i),K,n(π(i),lK ,m) +
r̃∑

j=rs+1

a′j
√
nB(β(j),K−,n)−1G(j),θ,n

=
1√
n

n∑
t=1

r∑
i=1

s∑
m=1

a′iB(β(i),K−,n)−1

×
{
∇ψ(i),K−

m(i),t(ψ
0
(i),K−,n, π(i),lK ,m)

− Eγn
[
∇ψ(i),K−

m(i),t(ψ
0
(i),K−,n, π(i),lK ,m)

]}
+

1√
n

n∑
t=1

r̃∑
j=rs+1

a′jB(β(j),K−,n)−1∇θ(i)m(i),t(θ(i),n)

where without loss of generality, the indices have been ordered so that all i with weakly identi-

fied parameters come first. Use the assumptions above an invoke an α-mixing CLT (Ibragimov,

1962) to establish that this converges to a zero mean Normal random variable with variance that

depends upon A and the vector [π(i),lK ,m] i=1,...,r
m=1,...,s

. A Cramér-Wold device then establishes the finite

dimensional convergence result.

B.5 Appendix: Proofs for the Max Test

Proof of Theorem 3.5.1. Together, Wn,i
p−→ Wi and Theorem 3.4.3 imply that under H0 and γn →

γ0,

N(i),λ,nWn,iλ̂(i) −WiS
′
(i),λZ(i)

p−→ 0

for each i = 1, . . . , k̊ where k̊ ≤ lim
n→∞

k̊n and where N(i),λ,n = S ′(i),λ(diag(n1/2 B(i)(β(i),K−,n))′,

1′dπ(i),lK

)′ and S(i),λ is the selection matrix that selects the element corresponding to λ(i). Now

apply Lemma 4.2 in Hill and Dennis (2018) to arrive at the result.
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Proof of Lemma 3.5.2. Here we show that the bootstrapped estimator converges weakly in prob-

ability to a random variable with the same distribution as given in the limit of Theorem 3.4.3.

Intuitively, this follows because, conditional on the sample, Ĝbs(i)(π(i),lK ) converges to a Gaus-

sian process with the same distribution as G(i)(π(i),lK ; γ0), resulting in τ̂ bs(i)(π(i),lK ; γ0, b) and

χ̂bs(i)(π(i),lK ; γ0, b) converging to the respective Gaussian and Chi-square processes. Invoking the

argmax continuity theorem then gives that π∗,bs(i),lK
(γ0, b) converges to π∗(i),lK (γ0, b). Joint conver-

gence occurs by the same arguments used in the proof of 3.4.3.

We only prove the claim under the case lK 6= ∅ for which weakly identified parameters are

present. The proof for the claim when there are no weakly identified parameters is similar but sim-

pler, as several of the steps needed when lK 6= ∅ are not necessary. This is due to the inconsistency

of π̂n for π0 under the case lK 6= ∅ and the required bootstrap step for calculating the bootstrapped

π∗, and the joint convergence of π̂n with the other variables.

Recall that

Ĝbs(i)(π(i),lK ) =
1√
n

n∑
t=1

zt

{
m(i),t(ψ̂

0
(i),K−,n(π(i),lK ), π(i),lK )

− 1

n

n∑
t=1

m(i),t(ψ̂
0
(i),K−,n(π(i),lK ), π(i),lK )

}
.

for N(0, 1) zt. First, we prove

{Ĝ(bs)
(i) (π) : π ∈ Π} ⇒p {G(i)(π; γ0) : π ∈ Π} (B.21)

where G(i)(π; γ0) is the mean zero Gaussian process, with covariance kernel Ω(i)(π, π̃; γ0), the

weak limit of G(i),n(·) when some parameters are weakly identified. Together with uniform con-

vergence in probability ofH(i),n(ψ̂0,n, π) toH(i)(π; γ0) andK(i),n(ψ̃n, π; γ̃n) toK(i)(ψ0, π; γ0), this

step will imply {τ (bs)
(i) (π; γ0, b) : π ∈ Π} ⇒p {τ(i)(π; b, γ0) : π ∈ Π}. Then the argmax continuity

theorem (cf van der Vaart and Wellner (1996), Lemma 3.2.1 and Andrews and Cheng (2012b),
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Theorem 9.10.) will yield

π∗(i),(bs)(γ0, b)
d−→ π∗(i)(γ0, b). (B.22)

Joint convergence over i follows from a Cramér-Wold device.

Operate conditionally on the sample Wn ≡ {Xt, Yt, Zt}nt=1. First, we prove B.21. We must

prove convergence in finite dimensional distributions and establish stochastic equicontinuity (see

Giné and Zinn (1990), Andrews (1994), or Pollard (1990)).

We prove convergence in finite dimensional distributions with an argument in Hansen (1996).

By construction of zt, Ĝ
(bs)
n (π) is normally distributed with mean zero and covariance kernel

E
(
Ĝ

(bs)
(i) (π)Ĝ

(bs)
(i) (π̃)′|Wn

)
=

1

n

n∑
t=1

[(
mψ

(i),t(ψ0,n, π)− 1

n

n∑
t=1

mψ
(i),t(ψ0,n, π)

)
×
(
mψ

(i),t(ψ0,n, π̃)− 1

n

n∑
t=1

mψ
(i),t(ψ0,n, π̃)

)′]

= Ω̂(i)(π, π̃)

where Ω̂(i)(π, π̃) is defined implicitly. LetW be the set of samples such that

sup
π,π̃∈Π×Π

||E
(
Ĝ(bs)

(i) (π)Ĝ(bs)
(i) (π̃)′|Wn

)
− Ω(i)(π, π̃; γ0)|| p−→ 0.

Then supπ,π̃∈Π×Π ||Ω̂(i)(π, π̃)−Ω(π, π̃; γ0)|| p−→ 0 follows from stationary mixing and the moment

bounds in Assumptions 1 and 5 establishing that P (Wn ∈ W) = 1. Thus Ĝ(bs)
(i) (π) converges in fi-

nite dimensional distributions to a zero mean Gaussian process with covariance kernel Ω(π, π̃; γ0).

Since Gaussian processes are characterized by their first two moments, the finite dimensional dis-

tributions of Ĝ(bs)
(i) (π) and G(i)(π) converge to the same limit.

Next, we show stochastic equicontinuity. Since the set {1, . . . , k̊} is compact and discrete, and

accounting for this set with i involves only invoking probability sub-additivity, we ignore subscript
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i for clarity (see Lemma D.3). Stochastic equicontinuity follows from the same argument used in

Lemma C.5. Let r ∈ Rdim(ψK− ) be such that r′r = 1. The mean value theorem yields

r′
(
mψ
t (ψ0,n, π)−mψ

t (ψ0,n, π̃)
)
≤ sup
◦
π∈Π

||r′ ∂
∂π
mψ
t (ψ0,n,

◦
π)|| × ||π̃ − π||.

Next, use the construction of zt and the fact that zt is independent of the data and Chebychev’s

inequality, and observe the following:

Pn(η) = P
(

sup
π,π̃∈Π:||π̃−π||≤δ

∣∣∣ 1√
n

n∑
t=1

ztr
′
(
mψ
t (ψ0,n, π)−mψ

t (ψ0,n, π̃)
)∣∣∣ > η|Wn

)
≤ 1

η2
E
[

sup
π,π̃∈Π:||π̃−π||≤δ

( 1√
n

n∑
t=1

ztr
′
(
mψ
t (ψ0,n, π)−mψ

t (ψ0,n, π̃)
))2

|Wn

]
=

1

η2
sup

π,π̃∈Π:||π̃−π||≤δ

1

n

n∑
t=1

(
r′
(
mψ
t (ψ0,n, π)−mψ

t (ψ0,n, π̃)
))2

≤ 1

η2

1

n

n∑
t=1

sup
π,π̃∈Π:||π̃−π||≤δ

(
r′
(
mψ
t (ψ0,n, π)−mψ

t (ψ0,n, π̃)
))2

≤ δ2

η2

1

n

n∑
t=1

sup
◦
π∈Π

(
||r′ ∂

∂π
mψ
t (ψ0,n,

◦
π)||
)2

=
δ2

η2
Cn

Now observe that

E

[
1

n

n∑
t=1

sup
◦
π∈Π

(
||r′ ∂

∂π
mψ
t (ψ0,n,

◦
π)||
)2
]

= E

[
sup
◦
π∈Π

(
||r′ ∂

∂π
mψ
t (ψ0,n,

◦
π)||
)2
]

= O(1)

by Assumption 5. Hence stationarity and ergodicity imply that Cn
p−→ C for a finite non-negative

constant C. Take δ > 0 such that 0 < δ ≤ (εη2/C)1/2 to see that for every (ε, η) > 0, there is a

δ > 0 such that limn→∞Pn(η) < ε with probability approaching one with respect to the sample

Wn.

Next, we prove B.22. Recall that supπ(i)∈Π(i)
||H(i),n(ψ̂(i),0,n, π(i)) − H(i)(π(i); γ0)|| p−→ 0
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and supπ(i)∈Π(i)
||K(i),n(ψ̃(i),n, π(i); γ̃n) − K(i)(ψ(i),0, π(i); γ0)|| p−→ 0 for every pair of sequences

ψ̃n → ψ0 and γ̃n → γ0. This paired with B.21 implies {τ (bs)
(i),n(π(i); γ0, b) : π(i) ∈ Π(i)} ⇒p

{τ(i)(π(i); b, γ0) : π(i) ∈ Π(i)}. The argmax continuity theorem (cf van der Vaart and Well-

ner (1996), Lemma 3.2.1 and Andrews and Cheng (2012b), Theorem 9.10.) then yields

π∗(i),(bs)(γ0, b)
d−→ π∗(i)(γ0, b). Joint convergence of (τ

(bs)
(i),n(π∗(i),(bs)(γ0, b); γ0, b)

′, π∗(i),(bs)(γ0, b))
′ fol-

lows since both objects are functions of the same underlying objects that we have shown to con-

verge. Finally, joint convergence over i follows from arguments mentioned above.

Proof of Theorem 3.5.4. The proof of Theorem 3.5.4 proceeds in the same fashion as the proof of

Theorem 3.5.1. We first note that Lemma 3.5.2 implies converge in probability of the difference

between the relevant distribution functions, and then we invoke Lemma 4.2 in Hill and Dennis

(2018) to arrive at the result.

B.6 Appendix: Additional Proofs

A test based on the normalization described in Theorem B.4.1 will be inconsistent when in-

cluding elements from πlK . The reason is that the standardization described for ψK− is
√
nB(βK−)

while that for π is the constant 1. The following lemma shows that this standardization will result

in an inconsistent test. For this reason, we detail the correct standardization in Theorem B.4.2.

Lemma B.6.1. A test on a subvector of θ that includes elements from πlK is not consistent when

the standardization is based on Theorem B.4.1.

Proof. Theorem B.4.1 implies that the appropriate standardization for ψ̂K− is
√
nB(βK−) and that

for π̂lK is 1. Hence the max test statistic over a vector λ = (βλ, ζλ, πλ)

T̂n = max
1≤i≤k̊n

|Ni,nWi,nλ̂i|

≤ max
1≤i≤k̊β,n

|
√
nβ̂λ(i)|+ max

1≤i≤k̊ζ,n
|
√
nζ̂λ(i)|+ max

1≤i≤k̊π,n
|
√
nB(βK−)π̂λ(i),K− |+ max

1≤i≤k̊π,n
|π̂λ(i),lK |.

Under the null hypothesis H0 : λj,0 = 0 ∀j, T̂n = Op(1). However, under any alternative with

ψj,K−,0 = 0 ∀j and πj,0 6= 0 for some j Theorem B.4.1 implies that π̂(i),lK ,j
d−→ π∗(i),lK ,j = Op(1)

181



www.manaraa.com

for every i. Hence under such an alternative, T̂n = Op(1) 6→ ∞, so the test is not consistent against

these alternatives.

Proof of Theorem 3.4.5. Recall that if lK is empty, then ψK− = θ and ψ(i),K− = θ(i) for every

i. Then Assumption 10 implies that Eγ0(mt(ψK− , πK ;Wt)) is minimized uniquely by ψK− =

ψK−,0 ∈ Ψ∗K− for every πK ∈ ΠK , and Assumption 4 implies that Eγ0(mt(ψ(i),K− , π(i),K ;Wt)) is

minimized uniquely by ψ(i),K− = ψ(i),K−,0 ∈ Ψ∗(i),K− for every π(i),K ∈ Π(i),K for every i. Further,

the construction of the criterion function implies that

∇ψ(i),K−
m(i),t(θ(i)) = ∇ψ(i),K−

mt([θ](i))

for every i, where [θ](i) is the restricted full parameter with λj = 0 for every j 6= i. By assumption

5, the expectations exist and are finite. Hence if λ0 = 0dλ , then λ(i),0 = 0 for every i, and

conversely, if λ(i),0 = 0, then λ0 = 0dλ .
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The Indian Journal of Statistics, Series A 71, 1–18.

Ramsey, F. P. (1929). On a problem of formal logic. Proceedings of the London Mathematical
Society 30, 264–286.

Resnick, S. I. (1987). Extreme Values, Regular Variation, and Point Processes. New York:
Springer.

Rogoff, K. (1996). The purchasing power parity puzzle. Journal of Economic Literature 34,
647–668.

Romano, J. and L. Thombs (1996). Inference for autocorrelations under weak assumptions. Jour-
nal of the American Statistical Association 91, 590–600.

Rothman, P., D. van Dijk, and P. H. Franses (2001). A multivariate star analysis of the relationship
between money and output. Macroeconomic Dynamics.

Schwert, G. W. (1989). Testing for unit roots: a monte carlo investigation. Journal of Business
and Economic Statistics 7, 147–159.

Shao, X. (2010). The dependent wild bootstrap. Journal of the American Statistical Associa-
tion 105(489), 218–235.

Shao, X. (2011a). A bootstrap-assisted spectral test of white noise under unknown dependence.
Journal of Econometrics 162, 213–224.

Shao, X. (2011b, April). Testing for white noise under unknown dependence and its applications
to diagnostic checking for time series models. Econometric Theory 27(2), 312–343.
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A. H. Würtz (Eds.), Nonlinear Econometric Modeling in Time Series Analysis, pp. 203–227.
Cambridge: Cambridge University Press.
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